Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Pandian Chithamparam1, Johnson Retnaraj Samuel Selvan Christyraj2, Senthil Muthu Kumar Thiagamani3,4,5This email address is being protected from spambots. You need JavaScript enabled to view it., Malinee Sriariyanun6, and Azhaguchamy Muthukumaran1This email address is being protected from spambots. You need JavaScript enabled to view it.

1Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India

2Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai- 600119, Tamil Nadu, India.

3Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil 626126, Tamil Nadu, India.

4Department of Mechanical Engineering, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia.

5Centre for Advanced Composite Materials (CACM), UniversitiTeknologi Malaysia, 81310 Skudai, Johor Bahru, Johor, Malaysia.

6Biorefinery and Process Automation Engineering Center, Department of Chemical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand


 

 

Received: October 10, 2024
Accepted: January 17, 2025
Publication Date: March 16, 2025

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202511_28(11).0017  


Harnessing the distinct features of nanoparticles and nanomaterials for biomedical use has seen remarkable progress in recent years. Tellurium nanoparticles (TeNPs) have attracted attention due to their exceptional properties and potential uses in photoconductivity, nonlinear optics, piezoelectricity, and thermal conductivity applications. This study synthesized TeNPs through a novel heat reduction method using ascorbic acid as a reducing agent, followed by various characterization studies. Functional studies, such as the antibacterial activity, antioxidant activity and cytotoxicity assays, AO/EB staining, and live cell imaging were performed using TeNPs. The various concentrations of TeNPs (5−20 µg/ml) result in inhibition zones against S.pyogens in the 5-13 mm range and against E.coli in the 6-12 mm range. The produced TeNPs minimum inhibitory concentration (MIC) demonstrated that these nanoparticles had antibacterial properties against the tested gram-positive and gram-negative bacterial strains. Moreover, TeNPs exhibit strong antioxidant properties and demonstrate high toxicity in C2C12 myoblastoma cells. Notably, at a concentration of 5 µg/ml, TeNPs exhibit potential toxicity. Live cell imaging and cell proliferation assay with high and lower concentrations of TeNPs retards cell growth and proliferation of C2C12 myoblastoma cells compared to control. Based on the results, due to the increased toxicity nature of TeNPs, lower concentrations below 5 µg might be used in scaffolds to enhance cell proliferation for regenerative medicine and tissue engineering applications.

 


Keywords: Health, Apoptosis, antimicrobial activity, antioxidant activity, tellurium nanoparticles, self-assembly


  1. [1] S. Chandramohan, K. Sundar, and A. Muthuku maran, (2019) “Hollow selenium nanoparticles from potato extract and investigation of its biological proper ties and developmental toxicity in zebrafish embryos" IET nanobiotechnology 13(3): 275–281. DOI: 10.1049/iet-nbt.2018.5228.
  2. [2] Y. Shi, M. Lin, X. Jiang, and S. Liang, (2015) “Recent advances in FePt nanoparticles for biomedicine" Jour nal of Nanomaterials 2015(1): 467873. DOI: 10.1155/2015/467873.
  3. [3] S. Chandramohan, K. Sundar, and A. Muthuku maran, (2019) “Reducing agents influence the shapes of selenium nanoparticles (SeNPs) and subsequently their antibacterial and antioxidant activity" Materials Re search Express 6(8): 0850i2. DOI: 10.1088/2053-1591/ab29d6.
  4. [4] M.C.Zambonino, E. M. Quizhpe, F. E. Jaramillo, A. Rahman, N. Santiago Vispo, C. Jeffryes, and S. A. Dahoumane, (2021) “Green synthesis of selenium and tellurium nanoparticles: current trends, biological prop erties and biomedical applications" International Jour nal of Molecular Sciences 22(3): 989. DOI: 10.3390/ijms22030989.
  5. [5] L. A. Ba, M. Döring, V. Jamier, and C. Jacob, (2010) “Tellurium: an element with great biological potency and potential" Organic & biomolecular chemistry 8(19): 4203–4216.
  6. [6] P. K. Gupta, P. P. Sharma, A. Sharma, Z. H. Khan, and P. R. Solanki, (2016) “Electrochemical and antimi crobial activity of tellurium oxide nanoparticles" Mate rials Science and Engineering: B 211: 166–172. DOI: 10.1016/j.mseb.2016.07.002.
  7. [7] B.A.Grzybowski, C. E. Wilmer, J. Kim, K. P. Browne, and K. J. Bishop, (2009) “Self-assembly: from crystals to cells" Soft Matter 5(6): 1110–1128.
  8. [8] M.Ghaffari-Moghaddam and H. Eslahi, (2014) “Syn thesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alco hol/Ag" Arabian journal of chemistry 7(5): 846–855. DOI: 10.1016/j.arabjc.2013.11.011.
  9. [9] K.-Y. Yoon, J. H. Byeon, J.-H. Park, and J. Hwang, (2007) “Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles" Sci ence of the Total Environment 373(2-3): 572–575. DOI: 10.1016/j.scitotenv.2006.11.007.
  10. [10] K. R. Raghupathi, R. T. Koodali, and A. C. Manna, (2011) “Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanopar ticles" Langmuir 27(7): 4020–4028. DOI: 10.1021/ la104825u.
  11. [11] M. Fa, D. Yang, L. Gao, R. Zhao, Y. Luo, and X. Yao, (2018) “The effect of AuNP modification on the an tioxidant activity of CeO2 nanomaterials with different morphologies" Applied Surface Science 457: 352–359. DOI: 10.1016/j.apsusc.2018.06.277.
  12. [12] Y.-T. Zhou, W. He, Y. M. Lo, X. Hu, X. Wu, and J.-J. Yin, (2013) “Effect of silver nanomaterials on the activ ity of thiol-containing antioxidants" Journal of agri cultural and food chemistry 61(32): 7855–7862. DOI: 10.1021/jf402146s.
  13. [13] M. Shakibaie, M. Adeli-Sardou, T. Mohammadi Khorsand, M. ZeydabadiNejad, E. Amirafzali, S. Amirpour-Rostami, A. Ameri, and H. Forootanfar, (2017) “Antimicrobial and antioxidant activity of the bio logically synthesized tellurium nanorods; a preliminary in vitro study" Iranian journal of biotechnology 15(4): 268. DOI: 10.15171/ijb.1580.
  14. [14] S. Jeyabharathi, K. Kalishwaralal, K. Sundar, and A. Muthukumaran, (2017) “Synthesis of zinc oxide nanoparticles (ZnONPs) by aqueous extract of Amaran thus caudatus and evaluation of their toxicity and antimi crobial activity" Materials Letters 209: 295–298. DOI: 10.1016/j.matlet.2017.08.030.
  15. [15] D. M. Cruz, W. Tien-Street, B. Zhang, X. Huang, A. V. Crua, A. Nieto-Argüello, J. L. Cholula-Díaz, L. Martínez, Y. Huttel, M. U. González, et al., (2019) “Citric juice-mediated synthesis of tellurium nanopar ticles with antimicrobial and anticancer properties" Green chemistry 21(8): 1982–1998. DOI: 10.1039/C9GC00131J.
  16. [16] L. Valgimigli, A. Baschieri, and R. Amorati, (2018) “Antioxidant activity of nanomaterials" Journal of Ma terials Chemistry B 6(14): 2036–2051. DOI: 10.1039/ C8TB00107C.
  17. [17] K. Donaldson, (2006) “Resolving the nanoparticles para dox" Nanomedicine 1(2): 229–234. DOI: 10.2217/17435889.1.2.229.
  18. [18] G. Oberdörster, E. Oberdörster, and J. Oberdörster, (2005) “Nanotoxicology: an emerging discipline evolv ing from studies of ultrafine particles" Environmental health perspectives 113(7): 823–839. DOI: 10.1289/ehp.7339.
  19. [19] S. Acharya and R. A. Hill, (2014) “High efficacy gold KDELpeptide-siRNA nanoconstruct-mediated transfec tion in C2C12 myoblasts and myotubes" Nanomedicine: Nanotechnology, Biology and Medicine 10(2): 329–337. DOI: 10.1016/j.nano.2013.07.015.
  20. [20] A.J.McGahon,S.J. Martin, R. P. Bissonnette, A. Mah boubi, Y. Shi, R. J. Mogil, W. K. Nishioka, and D. R. Green, (1995) “The end of the (cell) line: methods for the study of apoptosis in vitro" Methods in cell biology 46: 153–185. DOI: 10.1016/S0091-679X(08)61929-9.
  21. [21] S. Jeyabharathi, S. Chandramohan, S. Naveenkumar, K. Sundar, and A. Muthukumaran, (2021) “Synergis tic effects of herbal zinc oxide nanoparticles (ZnONPs) and its anti-hyperglycemic and anti-bacterial effects" Ma terials Today: Proceedings 36: 390–396. DOI: 10.1016/j.matpr.2020.04.685.
  22. [22] S. Naveenkumar, N. Alagumanikumaran, K. Kavi yarasu, and A. Muthukumaran, (2024) “Influence of encapsulated sodium alginates and pectin on sele nium nanoparticles and efficient cardioprotective effect in C2C12 cell line" Journal of Nanoparticle Research 26(3): 52. DOI: 10.1007/s11051-024-05956-x.
  23. [23] M.Saxena, A. K. Bera, and R. Venkatesh, (2021) “Wet chemical assisted synthesis of self assembled tellurium nanostructures with enhanced stability" Materials Let ters 301: 130300. DOI: 10.1016/j.matlet.2021.130300.
  24. [24] S. K. Batabyal, C. Basu, A. Das, and G. Sanyal, (2006) “Nanorods of tellurium: synthesis and self-assembly" Jour nal of nanoscience and nanotechnology 6(3): 719 725. DOI: 10.1166/jnn.2006.108.
  25. [25] W. B. Rogers, W. M. Shih, and V. N. Manoharan, (2016) “Using DNA to program the self-assembly of colloidal nanoparticles and microparticles" Nature Re views Materials 1(3): 1–14. DOI: 10.1038/natrevmats.2016.8.
  26. [26] A. Kumar, I. Sevonkaev, and D. V. Goia, (2014) “Syn thesis of selenium particles with various morphologies" Journal of colloid and interface science 416: 119–123. DOI: 10.1016/j.jcis.2013.10.046.
  27. [27] V. De Matteis, M. A. Malvindi, A. Galeone, V. Brunetti, E. De Luca, S. Kote, P. Kshirsagar, S. Sabella, G. Bardi, and P. P. Pompa, (2015) “Negligible particle specific toxicity mechanism of silver nanoparticles: the role of Ag+ ion release in the cytosol" Nanomedicine: Nan otechnology, Biology and Medicine 11(3): 731–739. DOI: 10.1016/j.nano.2014.11.002.
  28. [28] S. Menon, S. D. KS, H. Agarwal, and V. K. Shan mugam, (2019) “Efficacy of biogenic selenium nanopar ticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities" Colloid and Interface Science Communications 29: 1–8. DOI: 10.1016/j.colcom.2018.12.004.
  29. [29] R. C. Molina-Quiroz, C. M. Muñoz-Villagrán, E. De La Torre, J. C. Tantaleán, C. C. Vásquez, and J. M. Pérez-Donoso, (2012) “Enhancing the antibiotic antibac terial effect by sub lethal tellurite concentrations: tellurite and cefotaxime act synergistically in Escherichia coli" PloS one 7(4): e35452. DOI: 10.1371/journal.pone.0035452.
  30. [30] J.M.Pérez, I. L. Calderón, F. A. Arenas, D. E. Fuentes, G. A. Pradenas, E. L. Fuentes, J. M. Sandoval, M. E. Castro, A. O. Elías, and C. C. Vásquez, (2007) “Bacte rial toxicity of potassium tellurite: unveiling an ancient enigma" PloS one 2(2): e211. DOI: 10.1371/journal.pone.0000211.
  31. [31] W. K. Khalef, T. R. Marzoog, and A. D. Faisal. “Synthesis and characterization of tellurium oxide nanoparticles using pulse laser ablation and study their antibacterial activity”. In: Journal of Physics: Con ference Series. 1795. 1. IOP Publishing. 2021, 012049. DOI: 10.1088/1742-6596/1795/1/012049.
  32. [32] C. L. Zhong, B. Y. Qin, X. Y. Xie, and Y. Bai, (2013) “Antioxidant and antimicrobial activity of tellurium diox ide nanoparticles sols" Journal of Nano Research 25: 8–15. DOI: 10.4028/www.scientific.net/JNanoR.25.8.
  33. [33] R. Wahab, S. Dwivedi, F. Khan, Y. K. Mishra, I. Hwang, H.-S. Shin, J. Musarrat, and A. A. Al-Khedhairy, (2014) “Statistical analysis of gold nanoparticle-induced oxidative stress and apoptosis in my oblast (C2C12) cells" Colloids and surfaces B: Bioint erfaces 123: 664–672. DOI: 10.1016/j.colsurfb.2014.10.012.
  34. [34] M.C.Murugesan Chandrasekaran and M. P. Muthu raman Pandurangan, (2016) “In vitro selective anti proliferative effect of zinc oxide nanoparticles against co cultured C2C12 myoblastoma cancer and 3T3-L1 normal cells." DOI: 10.5555/20163205305.
  35. [35] M. Pandurangan, M. Veerappan, and D. H. Kim, (2015) “Cytotoxicity of zinc oxide nanoparticles on an tioxidant enzyme activities and mRNA expression in the cocultured C2C12 and 3T3-L1 cells" Applied bio chemistry and biotechnology 175: 1270–1280. DOI: 10.1007/s12010-014-1351-y.
  36. [36] M. J. Ma JieQing, G. R. Guan RongFa, S. H. Shen HaiTao, L. F. Lu Fei, X. C. Xiao ChaoGeng, L. M. Liu MingQi, and K. T. Kang TianShu, (2013) “Comparison of anticancer activity between lactoferrin nanoliposome and lactoferrin in Caco-2 cells in vitro." DOI: 10.1016/j.fct.2013.05.038.
  37. [37] M. BalaKumaran, R. Ramachandran, P. Balashan mugam, S. Jagadeeswari, and P. Kalaichelvan, (2022) “Comparative analysis of antifungal, antioxidant and cy totoxic activities of mycosynthesized silver nanoparticles and gold nanoparticles" Materials Technology 37(6): 411–421. DOI: 10.1080/10667857.2020.1854518.
  38. [38] M. Pandurangan, G. Enkhtaivan, and D. H. Kim, (2016) “Anticancer studies of synthesized ZnO nanopar ticles against human cervical carcinoma cells" Journal of Photochemistry and Photobiology B: Biology 158: 206–211. DOI: 10.1016/j.jphotobiol.2016.03.002.


Latest Articles

    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.