Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Fangyuan LiThis email address is being protected from spambots. You need JavaScript enabled to view it.

Zhejiang Business Technology Institute, Ningbo, Zhejiang, 315012, China


 

 

Received: June 16, 2024
Accepted: October 21, 2024
Publication Date: December 28, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202509_28(9).0012  


Despite their drawbacks, fossil fuels like gas, oil, and coal are widely used globally for energy purposes. On the contrary, nascent stages of the energy market are occupied by renewable energy sources such as solar, wind, and hydro, even though they are depletable and secure. Solar energy, which can be utilized on both small and large scales, is the purest form of renewable energy currently accessible. Accurate solar irradiance prediction is vital for sustainable solar energy use. Direct normal irradiance significantly influences solar power generation and can predict solar energy output. This study aims to develop a new hybrid model combining the grey wolf optimizer and extreme learning machine algorithm for accurate direct normal irradiance prediction despite forecasting complexities. Ten input characteristics were chosen for the suggested model from a set of ten features that were gathered in Qinghai from June 30, 2023, to July 1, 2022. Following this, a feature selection process was conducted on these attributes, and the algorithms proceeded to process only the most significant ones. Upon comparing the alternative model utilized in this study to the suggested model its capability and effectiveness were unequivocally established. Consequently, employing the suggested model enables one to reliably estimate direct normal irradiance for solar energy generation. Performance indicators for the proposed GWO-ELM model include RMSE of 63.17, MAE of 46.68, MSE of 3990.80, and RSE of 89.39. These findings show that the model can accurately and reliably estimate direct normal irradiance, despite the difficulties of solar energy forecasting.


Keywords: Direct Normal Irradiance, Hybrid forecasting model, Qinghai, Extreme learning machine, Grey wolf optimizer


  1. [1] Z.Wang, F. Wang, and S. Su, (2011) “Solar irradiance short-term prediction model based on BP neural network" Energy Procedia 12: 488–494. DOI: 10.1016/j.egypro.2011.10.065.
  2. [2] A. Djaafari, A. Ibrahim, N. Bailek, K. Bouchouicha, M. A.Hassan, A. Kuriqi, N. Al-Ansari, and E.-S. M. El-Kenawy, (2022) “Hourly predictions of direct normal irradiation using an innovative hybrid LSTM model for concentrating solar power projects in hyper-arid regions" Energy Reports 8: 15548–15562. DOI: 10.1016/j.egyr.2022.10.402.
  3. [3] F. E. A. Salah, N. Maouhoub, K. Tifidat, Y. Nam, and M. Abouhawwash, (2023) “An efficient analytical ap proach for forecasting the peak power of PV panels working in outdoor conditions based on explicit model" Energy Conversion and Management: X 20: 100423. DOI: 10.1016/j.ecmx.2023.100423.
  4. [4] S. Boriratrit, P. Fuangfoo, C. Srithapon, and R. Chatthaworn, (2023) “Adaptive meta-learning extreme learning machine with golden eagle optimization and lo gistic map for forecasting the incomplete data of solar irradiance" Energy and AI 13: 100243. DOI: 10.1016/j.egyai.2023.100243.
  5. [5] D.Hao,L. Qi, A. M. Tairab, A. Ahmed, A. Azam, D. Luo, Y. Pan, Z. Zhang, and J. Yan, (2022) “Solar energy harvesting technologies for PV self-powered applications: Acomprehensive review" Renewable Energy 188: 678 697. DOI: 10.1016/j.renene.2022.02.066.
  6. [6] K.Almutairi, M. A. Nazari, M. Salem, M. M. Rashidi, M.E. H.Assad, and S. Padmanaban, (2022) “A review on applications of solar energy for preheating in power plants" Alexandria Engineering Journal 61: 5283–5294. DOI: 10.1016/j.aej.2021.10.045.
  7. [7] Z. Liu, S. Wang, M. Q. Lim, M. Kraft, and X. Wang, (2021) “Game theory-based renewable multi-energy sys tem design and subsidy strategy optimization" Advances in Applied Energy 2: 100024. DOI: 10.1016/j.adapen.2021.100024.
  8. [8] R. Bhandari and R. R. Shah, (2021) “Hydrogen as en ergy carrier: Techno-economic assessment of decentralized hydrogen production in Germany" Renewable Energy 177: 915–931. DOI: 10.1016/j.renene.2021.05.149.
  9. [9] S. Sreenath, A. M. Azmi, N. Y. Dahlan, and K. Sud hakar, (2022) “A decade of solar PV deployment in ASEAN:Policylandscape and recommendations" Energy Reports 8: 460–469. DOI: 10.1016/j.egyr.2022.05.219.
  10. [10] M. Martínez-Lavín, R. Villena-Ruiz, A. Honrubia Escribano, J. C. Hernández, and E. Gómez-Lázaro, (2022) “Proposal for an aggregated solar PV power plant simulation model for grid code compliance" Electric Power Systems Research 213: 108676. DOI: 10.1016/j.epsr.2022.108676.
  11. [11] T. Han, Y. Wang, X. Wang, K. Chen, H. Peng, Z. Gao, L. Cui, W. Sun, and Q. Peng, (2023) “Mixed Multi-Pattern Regression for DNI Prediction in Arid Desert Areas" Sustainability 15: 12885. DOI: 10.3390/su151712885.
  12. [12] V. V. Murty and A. Kumar, (2020) “Optimal energy management and techno-economic analysis in microgrid with hybrid renewable energy sources" Journal of Mod ern Power Systems and Clean Energy 8: 929–940. DOI: 10.35833/MPCE.2020.000273.
  13. [13] M. O. Moreira, P. P. Balestrassi, A. P. Paiva, P. F. Ribeiro, and B. D. Bonatto, (2021) “Design of exper iments using artificial neural network ensemble for pho tovoltaic generation forecasting" Renewable and Sus tainable Energy Reviews 135: 110450. DOI: 10.1016/j.rser.2020.110450.
  14. [14] D. Connolly, H. Lund, and B. V. Mathiesen, (2016) “Smart Energy Europe: The technical and economic im pact of one potential 100% renewable energy scenario for the European Union" Renewable and Sustainable En ergy Reviews 60: 1634–1653. DOI: 10.1016/j.rser.2016.02.025.
  15. [15] T. Mai, D. Sandor, R. Wiser, and T. Schneider. Re newable electricity futures study. executive summary. Tech. rep. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2012. DOI: 10.2172/1063076.
  16. [16] E. R. I. China, (2015) “2050 high renewable energy pene tration scenario and roadmap study" Energy Research Institute: Beijing, China:
  17. [17] J.-W. Ni, M.-J. Li, T. Ma, W. Wei, and Z. Li, (2022) “The configuration optimized design method based on real time efficiency for the application of vanadium redox flow battery in microgrid" Energy Conversion and Man agement 267: 115899. DOI: 10.1016/j.enconman.2022.115899.
  18. [18] Y.-L. He, W. Wang, R. Jiang, M. Li, and W. Tao, (2023) “Liquid-based high-temperature receiver technologies for next-generation concentrating solar power: a review of challenges and potential solutions" Frontiers in Energy 17: 16–42. DOI: 10.1007/s11708-023-0866-8.
  19. [19] J.-Q. Guo, M.-J. Li, Y.-L. He, T. Jiang, T. Ma, J.-L. Xu, and F. Cao, (2022) “A systematic review of supercritical carbon dioxide (S-CO2) power cycle for energy industries: Technologies, key issues, and potential prospects" Energy Conversion and Management 258: 115437. DOI: 10.1016/j.enconman.2022.115437.
  20. [20] A. Strazzabosco, S. J. Kenway, and P. A. Lant, (2019) “Solar PV adoption in wastewater treatment plants: A review of practice in California" Journal of environ mental management 248: 109337. DOI: 10.1016/j.jenvman.2019.109337.
  21. [21] M. Bey, A. Hamidat, and T. Nacer, (2021) “Eco energetic feasibility study of using grid-connected pho tovoltaic system in wastewater treatment plant" Energy 216: 119217. DOI: 10.1016/j.energy.2020.119217.
  22. [22] Y. Zhang, L. Pinoy, B. Meesschaert, and B. V. der Bruggen, (2013) “A natural driven membrane process for brackish and wastewater treatment: photovoltaic pow ered ED and FO hybrid system" Environmental sci ence & technology 47: 10548–10555. DOI: 10.1021/es402534m.
  23. [23] F. Y. Al-Aboosi and A. F. Al-Aboosi, (2021) “Pre liminary Evaluation of a Rooftop Grid-Connected Pho tovoltaic System Installation under the Climatic Condi tions of Texas (USA)" Energies 14: 586. DOI: 10.3390/en14030586.
  24. [24] F.Y. Al-Aboosi, (2020) “Models and hierarchical method ologies for evaluating solar energy availability under dif ferent sky conditions toward enhancing concentrating solar collectors use: Texas as a case study" International Journal of Energy and Environmental Engineering 11: 177–205. DOI: 10.1007/s40095-019-00326-z.
  25. [25] Y. G. Landera, O. C. Zevallos, R. C. Neto, J. F. D. C. Castro, and F. A. S. Neves, (2023) “A review of grid connection requirements for photovoltaic power plants" Energies 16: 2093. DOI: 10.3390/en16052093.
  26. [26] T. Zhu, Y. Guo, Z. Li, and C. Wang, (2021) “Solar radiation prediction based on convolution neural network and long short-term memory" Energies 14: 8498. DOI: 10.3390/en14248498.
  27. [27] X. Qing and Y. Niu, (2018) “Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM" Energy 148: 461–468. DOI: 10.1016/j.energy.2018.01.177.
  28. [28] L.Ge,Y.Xian,J.Yan,B.Wang,andZ.Wang,(2020)“A hybrid model for short-term PV output forecasting based on PCA-GWO-GRNN" Journal of Modern Power Systems and Clean Energy 8: 1268–1275. DOI: 10.35833/MPCE.2020.000004.
  29. [29] F. Rodríguez, A. Fleetwood, A. Galarza, and L. Fontán, (2018) “Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control" Renewable energy 126: 855–864. DOI: 10.1016/j.renene.2018.03.070.
  30. [30] M.A.Madkour, M.El-Metwally, and A. B. Hamed, (2006) “Comparative study on different models for es timation of direct normal irradiance (DNI) over Egypt atmosphere" Renewable energy 31: 361–382. DOI: 10.1016/j.renene.2005.03.009.
  31. [31] W. Wang, Z. Zhen, K. Li, K. Lv, and F. Wang. “An ultra-short-term forecasting model for high resolution solar irradiance based on SOM and deep learning algorithm”. In: IEEE, 2019, 1090–1095. DOI: 10.1109/iSPEC48194.2019.8974983.
  32. [32] H. Sun, D. Yan, N. Zhao, and J. Zhou, (2015) “Empiri cal investigation on modeling solar radiation series with ARMA–GARCH models" Energy Conversion and Management 92: 385–395. DOI: 10.1016/j.enconman.2014.12.072.
  33. [33] W. Ji and K. C. Chee, (2011) “Prediction of hourly so lar radiation using a novel hybrid model of ARMA and TDNN" Solar energy 85: 808–817. DOI: 10.1016/j.solener.2011.01.013.
  34. [34] A. Alfadda, S. Rahman, and M. Pipattanasomporn, (2018) “Solar irradiance forecast using aerosols measure ments: A data driven approach" Solar Energy 170: 924 939. DOI: 10.1016/j.solener.2018.05.089.
  35. [35] S.Syama,J.Ramprabhakar,R.Anand,andJ.M.Guer rero, (2023) “A hybrid extreme learning machine model with lévy flight chaotic whale optimization algorithm for wind speed forecasting" Results in Engineering 19: 101274. DOI: 10.1016/j.rineng.2023.101274.
  36. [36] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. “Extreme learning machine: a new learning scheme of feed forward neural networks”. In: 2. Ieee, 2004, 985–990. DOI: 10.1109/IJCNN.2004.1380068.
  37. [37] S. Ding, X. Xu, and R. Nie, (2014) “Extreme learning machine and its applications" Neural Computing and Applications 25: 549–556. DOI: 10.1007/s00521-013 1522-8.
  38. [38] H. Dong, L. Yang, S. Zhang, and Y. Li, (2014) “An improved prediction approach on solar irradiance of pho tovoltaic Power Station" TELKOMNIKA Indonesian Journal of Electrical Engineering 12: 1720–1726. DOI: 10.11591/telkomnika.v12i3.4017.
  39. [39] V.N.Vapnik, (1999) “An overview of statistical learning theory" IEEE transactions on neural networks 10(5): 988–999. DOI: 10.1109/72.788640.
  40. [40] A. Alzahrani, (2022) “Short-Term Solar Irradiance Pre diction Based on Adaptive Extreme Learning Machine and Weather Data" Sensors 22: 8218. DOI: 10.3390/s22218218.
  41. [41] G. deFreitas Viscondi and S. N. Alves-Souza, (2021) “Solar irradiance prediction with machine learning algo rithms: a Brazilian case study on photovoltaic electric ity generation" Energies 14: 5657. DOI: 10.3390/en14185657.
  42. [42] S. Mirjalili, (2015) “The ant lion optimizer" Advances in engineering software 83: 80–98. DOI: 10.1016/j.advengsoft.2015.01.010.
  43. [43] S. Mirjalili, S. M. Mirjalili, and A. Lewis, (2014) “Grey wolf optimizer" Advances in engineering software 69: 46–61. DOI: 10.1016/j.advengsoft.2013.12.007.
  44. [44] Z. M.Yasin, N. A. Salim, N. Aziz, H. Mohamad, and N. Wahab, (2020) “Prediction of solar irradiance using grey Wolf optimizer least square support vector machine" Indonesian Journal of Electrical Engineering and Computer Science 17(1): 10–17. DOI: 10.11591/ijeecs.
  45. [45] L. Wang and J. Shi, (2021) “A comprehensive applica tion of machine learning techniques for short-term solar radiation prediction" Applied Sciences 11: 5808. DOI: 10.3390/app11135808.
  46. [46] N.Al-Rousan, H. Al-Najjar, and O. Alomari, (2021) “Assessment of predicting hourly global solar radiation in Jordan based on Rules, Trees, Meta, Lazy and Function prediction methods" Sustainable Energy Technologies and Assessments 44: 100923. DOI: 10.1016/j.seta.2020.100923.
  47. [47] S. Pereira, E. F. M. Abreu, M. Iakunin, A. Cavaco, R. Salgado, and P. Canhoto, (2022) “Method for solar resource assessment using numerical weather prediction and artificial neural network models based on typical me teorological data: Application to the south of Portugal" Solar Energy 236: 225–238. DOI: 10.1016/j.solener.2022.03.003.
  48. [48] Z. Allal, H. N. Noura, and K. Chahine, (2024) “Ma chine Learning Algorithms for Solar Irradiance Prediction: A Recent Comparative Study" e-Prime-Advances in Electrical Engineering, Electronics and Energy 7: 100453. DOI: 10.1016/j.prime.2024.100453.
  49. [49] C. Renno, F. Petito, and A. Gatto, (2016) “ANN model for predicting the direct normal irradiance and the global radiation for a solar application to a residential building" Journal of Cleaner Production 135: 1298–1316. DOI: 10.1016/j.jclepro.2016.07.049.
  50. [50] B. Shboul, A.-A. Ismail, S. Michailos, D. Ingham, L. Ma, K. J. Hughes, and M. Pourkashanian, (2021) “A newANNmodelforhourlysolarradiation and wind speed prediction: A case study over the north & south of the Arabian Peninsula" Sustainable Energy Technologies and Assessments 46: 101248. DOI: 10.1016/j.seta.2021.101248.
  51. [51] S. A. Kalogirou, (2001) “Artificial neural networks in renewable energy systems applications: a review" Renew able andsustainable energyreviews5:373–401. DOI: 10.1016/S1364-0321(01)00006-5.
  52. [52] A. Mellit, S. A. Kalogirou, L. Hontoria, and S. Shaari, (2009) “Artificial intelligence techniques for sizing pho tovoltaic systems: A review" Renewable and Sustain able Energy Reviews 13: 406–419. DOI: 10.1016/j.rser.2008.01.006.
  53. [53] A. Mellit and A. M. Pavan, (2010) “A 24-h forecast of solar irradiance using artificial neural network: Applica tion for performance prediction of a grid-connected PV plant at Trieste, Italy" Solar energy 84: 807–821. DOI: 10.1016/j.solener.2010.02.006.
  54. [54] Z. Wang, F. Wang, and S. Su, (2011) “Solar irradiance short-term prediction model based on BP neural network" Energy Procedia 12: 488–494. DOI: 10.1016/j.egypro.2011.10.065.
  55. [55] G. Capizzi, C. Napoli, and F. Bonanno, (2012) “In novative second-generation wavelets construction with recurrent neural networks for solar radiation forecasting" IEEE Transactions on neural networks and learning systems 23: 1805–1815. DOI: 10.1109/TNNLS.2012.2216546.
  56. [56] G. López, F. J. Batlles, and J. Tovar-Pescador, (2005) “Selection of input parameters to model direct solar irra diance by using artificial neural networks" Energy 30: 1675–1684. DOI: 10.1016/j.energy.2004.04.035.
  57. [57] S.Alam,S.C.Kaushik,andS.N.Garg,(2009)“Assess ment of diffuse solar energy under general sky condition using artificial neural network" Applied Energy 86: 554–564. DOI: 10.1016/j.apenergy.2008.09.004.
  58. [58] J. L. Bosch, G. Lopez, and F. J. Batlles, (2008) “Daily solar irradiation estimation over a mountainous area using artificial neural networks" Renewable Energy 33: 1622 1628. DOI: 10.1016/j.renene.2007.09.012.
  59. [59] J. Qi, Y. Lu, F. Han, X. Ma, and Z. Yang, (2022) “Spa tial distribution characteristics of the rural tourism vil lages in the Qinghai-Tibetan Plateau and its influencing factors" International Journal of Environmental Re search and Public Health 19: 9330. DOI: 10.3390/ijerph19159330.
  60. [60] M. Zheng, M. Zhu, Y. Wang, C. Xu, and H. Yang, (2018) “Eco-environment status evaluation and change analysis of Qinghai based on national geographic con ditions census data" The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42: 2453–2457. DOI: 10.5194/isprs-archives-XLII-3-2453-2018.
  61. [61] P. Zippenfenig, (2023) “Open-meteo. com weather API" URL: https://open-meteo.com/.   
  62. [62] V. R. Joseph and A. Vakayil, (2022) “SPlit: An optimal method for data splitting" Technometrics 64: 166–176. DOI: 10.1080/00401706.2021.1921037.
  63. [63] B.Supri, B. Mawadah, andH.Ali, (2023) “Asian Stock Index Price Prediction Analysis Using Comparison of Split Data Training and Data Testing" JEMSI (Jurnal Ekonomi,Manajemen,danAkuntansi)9:1403–1408. DOI: 10.35870/jemsi.v9i4.1339.
  64. [64] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman. The elements of statistical learning: data min ing, inference, and prediction. 2. Springer, 2009. DOI: 10.1007/978-0-387-84858-7.
  65. [65] Y. Lyu, H. Li, M. Sayagh, Z. M. Jiang, and A. E. Has san, (2021) “An empirical study of the impact of data splitting decisions on the performance of AIOps solu tions" ACM Transactions on Software Engineering and Methodology (TOSEM) 30: 1–38. DOI: 10.1145/3447876.
  66. [66] M. Otair, O. T. Ibrahim, L. Abualigah, M. Altalhi, and P. Sumari, (2022) “An enhanced grey wolf optimizer based particle swarm optimizer for intrusion detection system in wireless sensor networks" Wireless Networks 28: 721–744. DOI: 10.1007/s11276-021-02866-x.
  67. [67] M. Otair, O. T. Ibrahim, L. Abualigah, M. Altalhi, and P. Sumari, (2022) “An enhanced grey wolf optimizer based particle swarm optimizer for intrusion detection system in wireless sensor networks" Wireless Networks 28: 721–744. DOI: 10.1007/s11276-021-02866-x.
  68. [68] J. Kennedy and R. Eberhart. “Particle swarm opti mization”. In: 4. ieee, 1995, 1942–1948. DOI: 10.1109/ICNN.1995.488968.
  69. [69] F. Rustam and A. D. Jurcut, (2024) “Malicious traffic detection in multi-environment networks using novel S DATEandPSO-D-SEMapproaches" Computers & Se curity 136: 103564. DOI: 10.1016/j.cose.2023.103564.
  70. [70] S. Li, H. Chen, M. Wang, A. A. Heidari, and S. Mir jalili, (2020) “Slime mould algorithm: A new method for stochastic optimization" Future generation computer systems 111: 300–323. DOI: 10.1016/j.future.2020.03.055.
  71. [71] J. Wang, S. Lu, S.-H. Wang, and Y.-D. Zhang, (2022) “A review on extreme learning machine" Multimedia Tools and Applications 81: 41611–41660. DOI: 10.1007/s11042-021-11007-7.
  72. [72] B. Zhu, Y. Feng, D. Gong, S. Jiang, L. Zhao, and N. Cui, (2020) “Hybrid particle swarm optimization with extreme learning machine for daily reference evapotran spiration prediction from limited climatic data" Comput ers and Electronics in Agriculture 173: 105430. DOI: 10.1016/j.compag.2020.105430.
  73. [73] H. Faris, I. Aljarah, M. A. Al-Betar, and S. Mirjalili, (2018) “Grey wolf optimizer: a review of recent variants and applications" Neural computing andapplications 30: 413–435. DOI: 10.1007/s00521-017-3272-5.
  74. [74] Y. Kassem, H. Camur, M. T. Adamu, T. Chikowero, and T. Apreala, (2023) “Prediction of Solar Irradiation in Africa using Linear-Nonlinear Hybrid Models" Engi neering, Technology & Applied Science Research 13: 11472–11483. DOI: 10.48084/etasr.6131.
  75. [75] L. YangandA.Shami, (2020) “On hyperparameter opti mization of machine learning algorithms: Theory and prac tice" Neurocomputing 415: 295–316. DOI: 10.1016/j.neucom.2020.07.061.
  76. [76] B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas, T. Ullmann, M. Becker, and A.-L. Boulesteix, (2023) “Hyperparameter optimization: Foun dations, algorithms, best practices, and open challenges" Wiley Interdisciplinary Reviews: Data Mining and KnowledgeDiscovery13:e1484. DOI:10.1002/widm.1484.
  77. [77] K. G. Sheela and S. N. Deepa, (2013) “Review on methods to fix number of hidden neurons in neural net works" Mathematical problems in engineering 2013: 425740. DOI: 10.1155/2013/425740.
  78. [78] G.I. Diaz, A. Fokoue-Nkoutche, G. Nannicini, and H. Samulowitz, (2017) “An effective algorithm for hyper parameter optimization of neural networks" IBM Jour nal of Research and Development 61: 1–9. DOI: 10.48550/arXiv.1705.08520.
  79. [79] T. Peng, C. Zhang, J. Zhou, and M. S. Nazir, (2021) “Anintegrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting" Energy 221: 119887. DOI: 10.1016/j.energy.2021.119887.
  80. [80] S. Pereira, P. Canhoto, and R. Salgado, (2024) “Devel opment and assessment of artificial neural network models for direct normal solar irradiance forecasting using opera tional numerical weather prediction data" Energy and AI 15: 100314. DOI: 10.1016/j.egyai.2023.100314.
  81. [81] R. Srivastava, A. N. Tiwari, and V. K. Giri, (2019) “Solar radiation forecasting using MARS, CART, M5, and random forest model: A case study for India" Heliyon 5: DOI: 10.1016/j.heliyon.2019.e02692.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.