Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Basori1This email address is being protected from spambots. You need JavaScript enabled to view it., Muhd Ridzuan Mansor2,3, Maman Kartaman Ajiriyanto4, Rosika Kriswarini4, Bambang Soegijono5, Sigit Dwi Yudanto6, Dwi Nanto7, Cahaya Rosyidan8, and Ferry Budhi Susetyo9

1Department of Mechanical Engineering, Universitas Nasional, Sawo Manila Street, Jakarta 12520, Indonesia

2Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

3Centre for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

4Research Center for Nuclear Material and Radioactive Waste Technology-National Research and Innovation Agency, KST B.J. Habibie, Tangerang Selatan, Banten 15314, Indonesia

5PROUDTEK Lab., Department of Geoscience, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia

6Research Center for Metallurgy-National Research and Innovation Agency, KST B.J. Habibie, Tangerang Selatan, Banten 15314, Indonesia

7Department of Physics Education, UIN Syarif Hidayatullah, Ir. H. Djuanda Street, Ciputat 15412, Indonesia

8Department of Petroleum Engineering, Universitas Trisakti, Kyai Tapa Street, Jakarta 11440, Indonesia

9Department of Mechanical Engineering, Universitas Negeri Jakarta, Rawamangun Muka Street, Jakarta 13220, Indonesia


 

 

Received: October 30, 2023
Accepted: May 6, 2024
Publication Date: June 20, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202504_28(4).0016  


Anelectrode that produces oxy-hydrogen gas (HHO) through electrolysis, commonly uses stainless steel (SS). Nickel (Ni) electrodeposition over copper (Cu) alloy promises to replace SS in the electrolyte solution for HHO production. Therefore, it needs a deep exploration of electrodeposition Ni over Cu alloy. In the present work, Ni f ilm electrodeposition was conducted at various electrolyte solution temperatures. Watts solution was chosen due to its better performance than other plating bath compositions. The scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), X-ray diffractometer (XRD), Potentiostat, and hardness apparatus were employed to identify the characteristics of the Ni films over the Cu alloy. An increase in the solution temperature led to an increase in deposition rate, roughness, crystallite size, and transformation of nodules into pyramidal colonies. The high hardness of Ni-15 (Ni films synthesized over the Cu alloy at 15C electrolyte solution) is attributed to its smaller crystallite size. The Ni-15 sample has 38 nm of crystallite size and 232.26 HV of hardness. A lower corrosion rate was also found in the Ni-15 sample, about 1.84×10−3 mmpy. Therefore, it is recommended that the Ni-15 be selected as an electrode for HHO production because of its higher hardness and lower corrosion rate.


Keywords: Electrodeposition; Watts solution; Structure; Electrochemical behavior; Hardness


  1. [1] C.Tarhan and M. A. Çil, (2021) “A study on hydrogen, the clean energy of the future: Hydrogen storage methods" Journal of Energy Storage 40: 102676. DOI: 10.1016/j.est.2021.102676.
  2. [2] M.Trongtorkarn, T. Theppaya, M. Luengchavanon, and S. Chowdhry, (2023) “Wind Tunnel Experiment: Temperature And Starting Torque Affect PMSG Gener ator When Connected To Vertical Axis Wind Turbine Blade" Journal of Applied Science and Engineer ing (Taiwan) 26: 207–212. DOI: 10.6180/jase.202302_ 26(2).0006.
  3. [3] V. V. Pogorelko and A. E. Mayer, (2015) “Influence of copper inclusions on the strength of aluminum matrix at high-rate tension" Materials Science and Engineering A642: 351–359. DOI: 10.1016/j.msea.2015.07.009.
  4. [4] S. Lestari, M. Muflihah, R. Kusumawardani, M. Nurhadi, Y. Mangesa, F. I. Ridho, R. Adawiyah, P. Ambarwati,S.Rahma,S.YuanLai,andH.Nur,(2022) “Activated Bledug Kuwu’s Clay as Adsorbent Potential for Synthetic Dye Adsorption: Kinetic and Thermodynamic Studies" Bulletin of Chemical Reaction Engineering Catalysis 17: 22–31. DOI: 10.9767/bcrec.17.1.12473.2231.
  5. [5] A.G.Stern, (2018) “A new sustainable hydrogen clean energy paradigm" International Journal of Hydrogen Energy 43: 4244–4255. DOI: 10.1016/j.ijhydene.2017.12.180.
  6. [6] C. Acar and I. Dincer, (2019) “Review and evaluation of hydrogen production options for better environment" Journal of Cleaner Production 218: 835–849. DOI: 10.1016/j.jclepro.2019.02.046.
  7. [7] S. Anwar, F. Khan, Y. Zhang, and A. Djire, (2021) “Re cent development in electrocatalysts for hydrogen produc tion through water electrolysis" International Journal of Hydrogen Energy 46: 32284–32317. DOI: 10.1016/j.ijhydene.2021.06.191.
  8. [8] M. A. El Kady, A. El Fatih Farrag, M. S. Gad, A. K. El Soly, and H. M. Abu Hashish, (2020) “Parametric study and experimental investigation of hydroxy (HHO) production using dry cell" Fuel 282: 118825. DOI: 10.1016/j.fuel.2020.118825.
  9. [9] M. M.El-Kassaby, Y. A. Eldrainy, M. E. Khidr, and K. I. Khidr, (2016) “Effect of hydroxy (HHO) gas ad dition on gasoline engine performance and emissions" Alexandria Engineering Journal 55: 243–251. DOI: 10.1016/j.aej.2015.10.016.
  10. [10] A. C. Yilmaz, E. Uludamar, and K. Aydin, (2010) “Ef fect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines" In ternational Journal of Hydrogen Energy 35: 11366 11372. DOI: 10.1016/j.ijhydene.2010.07.040.
  11. [11] M. H. Sellami and K. Loudiyi, (2017) “Electrolytes behavior during hydrogen production by solar energy" Renewable and Sustainable Energy Reviews 70: 1331–1335. DOI: 10.1016/j.rser.2016.12.034.
  12. [12] R.Purwondho,A.Sudrajat,andHandoko,(2021)“Re search on the effect of SS316L electrode plate treatment on HHOgasproduction performance" IOP Conference Se ries: Earth and Environmental Science 794: 012021. DOI: 10.1088/1755-1315/794/1/012021.
  13. [13] B. Basori, W. M. F. W. Mohamad, M. R. Mansor, A. Iswadi, M. K. Ajiriyanto, and F. B. Susetyo, (2023) “Effect of KOH concentration on corrosion behavior and surface morphology of stainless steel 316L for HHO gener ator application" Journal of Electrochemical Science and Engineering 13: 451–467. DOI: 10.5599/jese.1615.
  14. [14] J. M. Olivares-Ramírez, M. L. Campos-Cornelio, J. Uribe Godínez, E. Borja-Arco, and R. H. Castellanos, (2007) “Studies on the hydrogen evolution reaction on dif ferent stainless steels" International Journal of Hydro gen Energy 32: 3170–3173. DOI: 10.1016/j.ijhydene.2006.03.017.
  15. [15] M. J. Gómez, L. A. Diaz, E. A. Franceschini, G. I. Lacconi, and G. C. Abuin, (2019) “3D nanostructured NiMo catalyst electrodeposited on 316L stainless steel for hydrogen generation in industrial applications" Journal of Applied Electrochemistry 49: 1227–1238. DOI: 10. 1007/s10800-019-01361-8.
  16. [16] M. J. Gomez, E. A. Franceschini, and G. I. Lacconi, (2018) “Ni and NixCoy Alloys Electrodeposited on Stain less Steel AISI 316L for Hydrogen Evolution Reaction" Electrocatalysis 9: 459–470. DOI: 10.1007/s12678-0180463-5.
  17. [17] I. Hamidah, A. Solehudin, and A. Setiawan, (2016) “Effect of variation of kalium hydroxide solution concentra tion and temperature to the corrosion resistance of AISI 304, AISI 316, and copper alloys in water electrolysis ap paratus" ARPN Journal of Engineering and Applied Sciences 11: 972–977.
  18. [18] Z. Yang, X. Liu, and Y. Tian, (2019) “Fabrication of super-hydrophobic nickel film on copper substrate with improved corrosion inhibition by electrodeposition pro cess" Colloids and Surfaces A 560: 205–212. DOI: 10.1016/j.colsurfa.2018.10.024.
  19. [19] F. B. Susetyo, B. Soegijono, Yusmaniar, M. C. Fajrah, and M. Cahya, (2021) “Deposition of nickel films on polycrystalline copper alloy with various current densities from watts solution Deposition of Nickel Films on Poly crystalline Copper Alloy with Various Current Densities from Watts Solution" AIP Conference Proceedings 2331: 030017. DOI: 10.1063/5.0041640.
  20. [20] H.Alimadadi, A. B. Fanta, T. Kasama, M. A. Somers, and K. Pantleon, (2016) “Texture and microstructure evolution in nickel electrodeposited from an additive-free Watts electrolyte" Surface Coatings Technology 299: 1–6. DOI: 10.1016/j.surfcoat.2016.04.068.
  21. [21] L. Jinlong, L. Tongxiang, and W. Chen, (2016) “Ef fect of electrodeposition temperature on grain orientation and corrosion resistance of nanocrystalline pure nickel" Journal of Solid State Chemistry 240: 109–114. DOI: 10.1016/j.jssc.2016.05.025.
  22. [22] S. Mirzamohammadi, H. Khorsand, and M. Aliofk hazraei, (2017) “Effect of different organic solvents on electrodeposition and wear behavior of Ni-alumina nanocomposite coatings" Surface Coatings Technol ogy 313: 202–213. DOI: 10.1016/j.surfcoat.2017.01.025.
  23. [23] S. Syamsuir, B. Soegijono, S. D. Yudanto, B. Basori, M. K. Ajiriyanto, D. Nanto, and F. B. Susetyo, (2023) “Electrolyte Temperature Dependency of Electrodeposited  Nickel in Sulfate Solution on the Hardness and Corro sion Behaviors" International Journal of Engineering Transactions C: Aspects 36: 1193–1200. DOI: 10.5829/ IJE.2023.36.06C.18.
  24. [24] F. B. Susetyo, M. C. Fajrah, and B. Soegijono, (2020) “Effect of Electrolyte Temperature on Properties of Nickel Film Coated onto Copper Alloy Fabricated by Electroplat ing" e-Journal of Surface Science and Nanotechnol ogy 18: 223–230. DOI: 10.1380/ejssnt.2020.223.
  25. [25] R. Xin, Y. Luo, A. Zuo, J. Gao, and Q. Liu, (2012) “Texture effect on corrosion behavior of AZ31 Mg alloy in simulated physiological environment" Materials Letters 72: 1–4. DOI: 10.1016/j.matlet.2011.11.032.
  26. [26] A.V. Babich and V. V. Pogosov, (2009) “Effect of dielec tric coating on the electron work function and the surface stress of a metal" Surface Science 603: 2393–2397. DOI: 10.1016/j.susc.2009.05.036.
  27. [27] M. Hoseini, A. Shahryari, S. Omanovic, and J. A. Szpunar, (2009) “Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing" Corrosion Science 51: 3064–3067. DOI: 10.1016/j. corsci.2009.08.017.
  28. [28] J. Lu, M. Wang, X. Deng, J. Yan, J. Yun, and S. Jiao, (2019) “Evaluation of K3Fe(CN)6 on Deposi tion Behavior and Structure of Electroless Copper Plat ing" Electrochemistry 87: 214–219. DOI: 10.5796/electrochemistry.19-00010.
  29. [29] A. Srivani and M. Anthony Xavior, (2014) “Investi gation of surface texture using image processing tech niques" Procedia Engineering 97: 1943–1947. DOI: 10.1016/j.proeng.2014.12.348.
  30. [30] S. Rwawiire, A. Kasedde, I. Nibikora, and G. Wan dera, (2014) “Prediction of polyester/cotton ring spun yarn unevenness using adaptive neuro fuzzy inference system" Journal of Textile and Apparel, Technology and Management 8: 1–12.
  31. [31] X. L. Zhang, Z. H. Jiang, Z. P. Yao, Y. Song, and Z. D. Wu, (2009) “Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density" Corrosion Science 51: 581–587. DOI: 10.1016/j.corsci.2008.12.005.
  32. [32] Z. Ahmad. Principles of corrosion engineering and corro sion control. Elsevier, 2006, 1–656. DOI: 10.1016/b9780-7506-5924-6.x5000-4.
  33. [33] C. K. Chung, W. T. Chang, and S. T. Hung, (2010) “Electroplating of nickel films at ultra low electrolytic tem perature" Microsystem Technologies 16: 1353–1359. DOI: 10.1007/s00542-009-0955-6.
  34. [34] N.A.Badarulzaman, A. A. Mohamad, S. Puwadaria, and Z. A. Ahmad, (2010) “The evaluation of nickel de posit obtained via Watts electrolyte at ambient tempera ture" Journal of Coatings Technology and Research 7: 815–820. DOI: 10.1007/s11998-010-9271-4.
  35. [35] W. Tan, H. He, Y. Gao, Y. Peng, and X. Dai, (2021) “Nucleation and growth mechanisms of an electrodeposited Ni–Se–Cu coating on nickel foam" Journal of Colloid and Interface Science 600: 492–502. DOI: 10.1016/j.jcis.2021.05.002.
  36. [36] O. Aaboubi, A. Y. Ali Omar, A. Franczak, and K. Msellak, (2015) “Investigation of the electrodeposition kinetics of Ni-Mo alloys in the presence of magnetic field" Journal of Electroanalytical Chemistry 737: 226–234. DOI: 10.1016/j.jelechem.2014.10.014.
  37. [37] E. Beltowska-Lehman, (2002) “Electrodeposition of pro tective Ni-Cu-Mo coatings from complex citrate solu tions" Surface and Coatings Technology 151-152: 440–443. DOI: 10.1016/S0257-8972(01)01613-9.
  38. [38] W. Xing, S. Qiao, X. Wu, X. Gao, J. Zhou, S. Zhuo, S. B. Hartono, and D. Hulicova-Jurcakova, (2011) “Exaggerated capacitance using electrochemically active nickel foam as current collector in electrochemical mea surement" Journal of Power Sources 196: 4123–4127. DOI: 10.1016/j.jpowsour.2010.12.003.
  39. [39] C.K.Chung,W.T.Chang,C.F.Chen,andM.W.Liao, (2011) “Effect of temperature on the evolution of diffusiv ity, microstructure and hardness of nanocrystalline nickel f ilms electrodeposited at low temperatures" Materials Letters 65: 416–419. DOI: 10.1016/j.matlet.2010.10.064.
  40. [40] A. Jabbar, G. Yasin, W. Q. Khan, M. Y. Anwar, R. M. Korai, M. N. Nizam, and G. Muhyodin, (2017) “Elec trochemical deposition of nickel graphene composite coat ings effect of deposition temperature on its surface mor phology and corrosion resistance" RSC Advances 7: 31100–31109. DOI: 10.1039/c6ra28755g.
  41. [41] R.Sen,S.Das,andK.Das,(2011)“Theeffectofbathtem perature on the crystallite size and microstructure of Ni CeO2 nanocomposite coating" Materials Characteriza tion 62: 257–262. DOI: 10.1016/j.matchar.2011.01.013.
  42. [42] A. Ul-Hamid, A. Quddusa, H. Saricimena, and H. Dafallaa, (2015) “Corrosion behavior of coarse- and fine grain Ni coatings incorporating NaH2PO4.H2O inhibitor treated substrates" Materials Research 18: 20–26. DOI: 10.1590/1516-1439.253114.
  43. [43] G. Cheng, Q. Bai, C. Si, W. Yang, C. Dong, H. Wang, Y. Gao, and Z. Zhang, (2015) “Nickel oxide nanopetal decorated 3D nickel network with enhanced pseudocapac itive properties" RSC Advances 5: 15042–15051. DOI: 10.1039/c4ra15556d.
  44. [44] A.C.LarsonandR.B.V.Dreele,(2004)“GeneralStruc ture Analysis System (GSAS)": 1–224.
  45. [45] A.Monshi, M. R. Foroughi, and M. R. Monshi, (2012) “Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD" World Journal of NanoScience and Engineering 2: 154–160. DOI: 10.4236/wjnse.2012.23020.
  46. [46] S.D.Yudanto,S.A.Chandra,R.Roberto,D.P.Utama, V. O. Herlina, and Lusiana, (2022) “Phase and electrical properties of Ca3Co4O9 ceramic prepared by a citrate sol gel route" Journal of Ceramic Processing Research 23: 287–291. DOI: 10.36410/jcpr.2022.23.3.287.
  47. [47] S. Kamila and V. R. Venugopal, (2017) “Synthesis and structural analysis of different CuO nano particles" Inter national Journal of Applied Science and Engineer ing 14: 133–146. DOI: 10.6703/IJASE.2017.14(3).133.
  48. [48] B. Krawczyk, P. Cook, J. Hobbs, and D. L. Engelberg, (2017) “Corrosion behavior of cold rolled type 316L stain less steel in HCl-containing environments" Corrosion 73: 1346–1358. DOI: 10.5006/2415.
  49. [49] Q. Li, M. G. Lee, J. Che, Y. C. Kan, and C. T. Chiu, (2018) “Mechanical properties and corrosion resistance of cement concrete containing sea sand or sea water" Inter national Journal of Applied Science and Engineer ing 15: 199–210. DOI: 10.6703/IJASE.201812_15(3) .199.
  50. [50] G. Aydin and A. Yazici, (2019) “Effect of quenching and tempering temperature on corrosion behavior of boron steels in 3.5 wt.% NaCl solution" International Journal of Electrochemical Science 14: 2126–2135. DOI: 10.20964/2019.03.22.
  51. [51] R. D. Monteiro, J. V. D. Wetering, B. Krawczyk, and D. L. Engelberg, (2019) “Corrosion Behaviour of Type 316L Stainless Steel in Hot Caustic Aqueous Environ ments" Metals and Materials International 26: 630 640. DOI: 10.1007/s12540-019-00403-2.
  52. [52] N. Xu, D. K. Sarkar, X. G. Chen, and W. P. Tong, (2016) “Corrosion performance of superhydrophobic nickel stearate/nickel hydroxide thin films on aluminum alloy by a simple one-step electrodeposition process" Surface Coatings Technology 302: 173–184. DOI: 10.1016/j.surfcoat.2016.05.050.
  53. [53] R. Zulkafli, N. K. Othman, N. Yaakob, F. K. Sahrani, and M. Al-Furjan, (2023) “Electrochemical Studies of Microbiologically Influenced Corrosion on API 5L X65 by Sulfate-Reducing Bacteria in CO2 Environments" Ev ergreen 10: 601–607. DOI: 10.5109/6782167.
  54. [54] H. Zhao, L. Liu, J. Zhu, Y. Tang, and W. Hu, (2007) “Microstructure and corrosion behavior of electrodeposited nickel prepared from a sulphamate bath" Materials Let ters 61: 1605–1608. DOI: 10.1016/j.matlet.2006.07.178.
  55. [55] V. F. Lins, E. S. Cecconello, and T. Matencio, (2008) “Effect of the current density on morphology, porosity, and tribological properties of electrodeposited nickel on copper" Journal of Materials Engineering and Performance 17: 741–745. DOI: 10.1007/s11665-008-9205-9.
  56. [56] C.-q. Li, X.-h. Li, Z.-x. Wang, and H.-j. Guo, (2007) “Nickel electrodeposition from novel citrate bath" Trans actions of Nonferrous Metals Society of China 17: 1300–1306. DOI: 10.1016/s1003-6326(07)60266-0.
  57. [57] U. S. Mohanty, B. C. Tripathy, S. C. Das, and V. N. Misra, (2005) “Effect of thiourea during nickel electrode position from acidic sulfate solutions" Metallurgical and Materials Transactions B 36: 737–741. DOI: 10.1007/ s11663-005-0077-1.