REFERENCES
- [1] E. Njim, M. Al-Waily, and S. Bakhy, (2021) “A review of the recent research on the experimental tests of functionally graded sandwich panels" Journal of Mechanical Engineering Research and Developments 44(3): 420–441.
- [2] B. Saleh, J. Jiang, R. Fathi, T. Al-hababi, Q. Xu, L. Wang, D. Song, and A. Ma, (2020) “30 Years of functionally graded materials: An overview of manufacturing methods, Applications and Future Challenges" Composites Part B: Engineering 201: DOI: 10 . 1016 / j.compositesb.2020.108376.
- [3] A. Garg, M.-O. Belarbi, H. Chalak, and A. Chakrabarti, (2021) “A review of the analysis of sandwich FGM structures" Composite Structures 258: DOI:10.1016/j.compstruct.2020.113427.
- [4] K. Magnucki and E. Magnucka-Blandzi, (2021) “Generalization of a sandwich structure model: Analytical studies of bending and buckling problems of rectangular plates" Composite Structures 255: DOI: 10.1016/j.compstruct.2020.112944.
- [5] S. C. Chikr, A. Kaci, A. A. Bousahla, F. Bourada, A. Tounsi, E. Bedia, S. Mahmoud, K. H. Benrahou, and A. Tounsi, (2020) “A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin’s approach" Geomechanics and Engineering21(5): 471–487.
- [6] S. Refrafi, A. Bousahla, A. Bouhadra, A. Menasria, F. Bourada, A. Tounsi, E. Bedia, S. Mahmoud, K. Benrahou, and A. Tounsi, (2020) “Effects of hygro-thermomechanical conditions on the buckling of FG sandwich plates resting on elastic foundations" Computers and Concrete 25(4): 311–325. DOI: 10.12989/cac.2020.25.4.311.
- [7] M. Uslu Uysal and U. Güven, (2015) “Buckling of functional graded polymeric sandwich panel under different load cases" Composite Structures 121: 182–196. DOI:10.1016/j.compstruct.2014.11.012.
- [8] R. Abo-bakr, H. Abo-bakr, S. Mohamed, and M. Eltaher, (2021) “Optimal weight for buckling of FG beam under variable axial load using Pareto optimality" Composite Structures 258: DOI: 10.1016/j .compstruct.2020.113193.
- [9] Y. Sitli, K. Mhada, O. Bourihane, and H. Rhanim, (2021) “Buckling and post-buckling analysis of a functionally graded material (FGM) plate by the Asymptotic Numerical Method" Structures 31: 1031–1040. DOI: 10.1016/j.istruc.2021.01.100.
- [10] M. Arefi and F. Najafitabar, (2021) “Buckling and free vibration analyses of a sandwich beam made of a soft core with FG-GNPs reinforced composite face-sheets using Ritz Method" Thin-Walled Structures 158: DOI: 10.1016/j.tws.2020.107200.
- [11] O. Civalek and M. Jalaei, (2020) “Shear buckling analysis of functionally graded (FG) carbon nanotube reinforced skew plates with different boundary conditions" Aerospace Science and Technology 99: DOI: 10.1016/j.ast.2020.105753.
- [12] M. Kaddari, A. Kaci, A. Bousahla, A. Tounsi, F. Bourada, A. Tounsi, E. Bedia, and M. Al-Osta, (2020) “A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis" Computers and Concrete 25(1): 37–57. DOI: 10.12989/cac.2020.25.1.037.
- [13] J. Wang, S. Cao, and W. Zhang, (2021) “Thermal vibration and buckling analysis of functionally graded carbon nanotube reinforced composite quadrilateral plate" European Journal of Mechanics, A/Solids 85: DOI:10.1016/j.euromechsol.2020.104105.
- [14] H. Lu, W. Zhang, and J. Mao. “Buckling analyses of functionally graded graphene nanoplatelets reinforced nonlocal piezoelectric microplate”. In: 774. 1. cited By 0. 2020. DOI: 10.1088/1757-899X/774/1/012103.
- [15] C. Li, H.-S. Shen, and H.Wang, (2020) “Postbuckling behavior of sandwich plates with functionally graded auxetic 3D lattice core" Composite Structures 237: DOI:10.1016/j.compstruct.2020.111894.
- [16] N. Nguyen, H. Nguyen-Xuan, D. Lee, and J. Lee, (2020) “A novel computational approach to functionally graded porous plates with graphene platelets reinforcement" Thin-Walled Structures 150: DOI: 10.1016/j.tws.2020.106684.
- [17] B. Adhikari, P. Dash, and B. Singh, (2020) “Buckling analysis of porous FGM sandwich plates under various types nonuniform edge compression based on higher order shear deformation theory" Composite Structures 251: DOI: 10.1016/j.compstruct.2020.112597.
- [18] R. Moradi-Dastjerdi, K. Behdinan, B. Safaei, and Z. Qin, (2020) “Buckling behavior of porous CNT-reinforced plates integrated between active piezoelectric layers" Engineering Structures 222: DOI: 10.1016/j.engstruct. 2020.111141.
- [19] C.-L. Thanh, K. Nguyen, N. Nguyen-Trong, S. Khatir, H. Nguyen-Xuan, and M. Abdel-Wahab, (2021) “A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA" Composite Structures 259: DOI: 10 . 1016 / j . compstruct . 2020 . 113216.
- [20] M. Bacciocchi, (2020) “Buckling analysis of three-phase CNT/polymer/fiber functionally graded orthotropic plates: Influence of the non-uniform distribution of the oriented fibers on the critical load" Engineering Structures 223:DOI: 10.1016/j.engstruct.2020.111176.
- [21] M.-C. Trinh, T. Mukhopadhyay, and S.-E. Kim, (2020) “A semi-analytical stochastic buckling quantification of porous functionally graded plates" Aerospace Science and Technology 105: DOI: 10.1016/j.ast.2020.105928.
- [22] V. V. Pham and Q. H. Le, (2021) “Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory" Defence Technology: DOI: 10.1016/j.dt.2021.03.006.
- [23] A. Daikh and A. Zenkour, (2019) “Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory" Materials Research Express 6(11): DOI: 10.1088/2053-1591/ab48a9.
- [24] M. Guellil, H. Saidi, F. Bourada, A. Bousahla, A. Tounsi, M. Al-Zahrani, M. Hussain, and S. Mahmoud, (2021) “Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation" Steel and Composite Structures 38(1): 1–15. DOI: 10.12989/scs.2021.38.1.001.
- [25] A. Zenkour, (2020) “Quasi-3D Refined Theory for Functionally Graded Porous Plates: Displacements and Stresses" Physical Mesomechanics 23(1): 39–53. DOI:10.1134/S1029959920010051.
- [26] M. Al-Waily, M. Al-Shammari, and M. Jweeg, (2020) “An analytical investigation of thermal buckling behavior of composite plates reinforced by carbon nano particles" Engineering Journal 24(3): 11–21. DOI: 10.4186/ej.2020.24.3.11.
- [27] Y. Liu, Y. Hu, T. Liu, J. Ding, and W. Zhong, (2015) “Mechanical behavior of high density polyethylene and its carbon nanocomposites under quasi-static and dynamic compressive and tensile loadings" Polymer Testing 41: 106–116. DOI: 10.1016/j.polymertesting.2014.11.003.
- [28] N. Bonnheim, F. Ansari, M. Regis, P. Bracco, and L. Pruitt, (2019) “Effect of carbon fiber type on monotonic and fatigue properties of orthopedic grade PEEK" Journal of the Mechanical Behavior of Biomedical Materials 90: 484–492. DOI: 10.1016/j.jmbbm.2018.10.033.
- [29] E. K. Njim, S. H. Bakhy, and M. Al-Waily, (2021) “Optimization design of vibration characterizations for functionally graded porous metal sandwich plate structure" Materials Today: Proceedings: