Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Khola Ikram1, Syed Maaz Hasan1This email address is being protected from spambots. You need JavaScript enabled to view it., Ch Abdullah1, M Zulfiqar1, Emad Uddin1, Zaib Ali1, and M. Sajid2

1Department of Mechanical Engineering, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan

2School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland


 

 

Received: August 16, 2024
Accepted: October 4, 2024
Publication Date: November 4, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202508_28(8).0006  


The curvature of microchannels significantly influences the direction and amplitude of secondary flow, impact ing particle sorting efficiency. Using an inertia-based microchannel model for particle sorting, a detailed flow characterization analysis was done to identify particle sorting and promote standards methods in the microflu idics field. Bends of various angles have numerous uses in microfluidics, and it is essential to comprehend the f lowbehavior in these microchannels. This work represents the results of a microchannel analysis with various micro-bend angles. Four microchannel designs were studied with outlet angles of 45,60,90, and straight channels. Microchannel was fabricated through SLA 3d printing and laser cutting. To investigate the influence of flow-related parameters on systems performance, testing was conducted using 10 & 20 µm, 20 & 60 µm, and 40 &60 µmsizedparticles and flow rates of 50-250 µL/min to stimulate red and white blood cells. Furthermore, imaging was done using a microscope, and postprocessing was done through MATLAB Image Processing. This study reveals that a detailed investigation of particle sorting is necessary to produce consistent test techniques for microfluidic devices to enhance medical diagnostic field performance and promote advancement in the biomedical industry.

 


Keywords: Particle sorting; Microfluidics; SLA printing; Laser cutting; Microchannels


  1. [1] A. Bohr, S. Colombo, and H. Jensen. “Future of mi crofluidics in research and in the market”. In: Mi crofluidics for Pharmaceutical Applications. Elsevier, 2019, 425–465. DOI: 10.1016/B978-0-12-812659-2.00016-8.
  2. [2] I. Ahmed, H. M. N.Iqbal, and Z. Akram, (2018) “Mi crofluidics Engineering: Recent Trends, Valorization, and Applications" Arab Journal of Science and Engineer ing 43: 23–32. DOI: 10.1007/s13369-017-2662-4.
  3. [3] A. P. Kuo, N. Bhattacharjee, Y. Lee, K. Castro, Y. T. Kim, and A. Folch, (2019) “High-Precision Stereolithog raphy of Biomicrofluidic Devices" Advanced Materi als Technologies 4: 1800395. DOI: 10.1002/admt.201800395.
  4. [4] S. J. Gräfner, P. Y. Wu, and C. R. Kao, (2022) “Flow in a microchannel filled with arrays of numerous pillars" International Journal of Heat and Fluid Flow 97: 109045. DOI: 10.1016/j.ijheatfluidflow.2022.109045.
  5. [5] H. Mohamadzade Sani, M. Falahi, K. Aieneh, S. M. Hosseinalipour, S. Salehi, and S. Asiaei, (2024) “Per formance optimization of droplet formation and break up within a microfluidic device– Numerical and experimental evaluation" International Journal of Heat and Fluid Flow 106: 109266. DOI: 10.1016/j.ijheatfluidflow.2023.109266.
  6. [6] I. Khan, R. Zulkifli, T. Chinyoka, T. Muhammad, and I. Ali, (2024) “Numerical study of electro-osmotic thermal influence in a porous medium saturated micro-channel of a reactive third-grade fluid (TGF) with thermal radia tion and exothermic reaction" International Journal of Heat and Fluid Flow 108: 109436. DOI: 10.1016/j.ijheatfluidflow.2024.109436.
  7. [7] X. Dong, L. Liu, Y. Tu, J. Zhang, G. Miao, and L. e. a. Zhang, (2021) “Rapid PCR powered by microfluidics: A quick review under the background of COVID-19 pan demic" Trends in Analytical Chemistry 143: 116377. DOI: 10.1016/j.trac.2021.116377.
  8. [8] Q.Li, X. Zhou, Q. Wang, W. Liu, and C. Chen, (2023) “Microfluidics for COVID-19: From Current Work to Fu ture Perspective" Biosensors 13: 163. DOI: 10.3390/bios13020163.
  9. [9] L. Xu, A. Wang, X. Li, and K. W. Oh, (2020) “Passive micropumping in microfluidics for point-of-care testing" Biomicrofluidics 14: 031503. DOI: 10.1063/5.0002169.
  10. [10] S. O. Catarino, R. O. Rodrigues, D. Pinho, J. M. Mi randa, G. Minas, and R. Lima, (2019) “Blood Cells Sep aration and Sorting Techniques of Passive Microfluidic Devices: From Fabrication to Applications" Microma chines 10: 593.
  11. [11] V. Kumar and J. Sarkar, (2022) “Numerical Analysis on Hydrothermal Behavior of Various Ribbed Minichan nel Heat Sinks with Different Hybrid Nanofluids" Arab Journal of Science and Engineering 47: 6209–6221. DOI: 10.1007/s13369-021-06119-z.
  12. [12] K.Jiang, D. S. Jokhun, and C. T. Lim, (2021) “Microflu idic detection of human diseases: From liquid biopsy to COVID-19 diagnosis" Journal of Biomechanics 117: 110235. DOI: 10.1016/j.jbiomech.2021.110235.
  13. [13] Y. Zhang, T. Zheng, L. Wang, L. Feng, M. Wang, and Z. e. a. Zhang, (2021) “From passive to active sorting in microfluidics: A review" Reviews on Advanced Mate rials Science 60: 313–324. DOI: 10.1515/rams-20200044.
  14. [14] A. Hochstetter, (2020) “Lab-on-a-Chip Technologies for the Single Cell Level: Separation, Analysis, and Di agnostics" Micromachines 11: 468. DOI: 10.3390/mi11050468.
  15. [15] H. Abdulla Yusuf, S. M. Z. Hossain, A. A. Khamis, H. T. Radhi, A. S. Jaafar, and P. R. Fielden, (2021) “A Hybrid Microfluidic Differential Carbonator Approach for Enhancing Microalgae Growth: Inline Monitoring Through Optical Imaging" Arab Journal of Science andEngineering46: 6765–6774. DOI: 10.1007/s13369 021-05353-9.
  16. [16] K. Cheng, J. Guo, Y. Fu, and J. Guo, (2021) “Active microparticle manipulation: Recent advances" Sensors and Actuators A: Physical 322: 112616. DOI: 10.1016/j.sna.2021.112616.
  17. [17] N.Pamme,(2007) “Continuous flow separations in mi crofluidic devices" Lab Chip 7: 1644. DOI: 10.1039/ b712784g.
  18. [18] A. A.S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, (2010) “Microfluidics for cell separation" Medical Biological Engineering Computing 48: 999–1014. DOI: 10.1007/s11517-010-0611-4.
  19. [19] D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, and W. e. a. Lee, (2010) “Label-free cell sep aration and sorting in microfluidic systems" Analytical and Bioanalytical Chemistry 397: 3249–3267. DOI: 10.1007/s00216-010-3721-9.
  20. [20] X. Yang, O. Forouzan, T. P. Brown, and S. S. Shevko plyas, (2012) “Integrated separation of blood plasma from whole blood for microfluidic paper-based analyti cal devices" Lab Chip 12: 274–280. DOI: 10.1039/C1LC20803A.
  21. [21] M.Javaid, T. Cheema, and C. Park, (2017) “Analysis of Passive Mixing in a Serpentine Microchannel with Sinusoidal Side Walls" Micromachines 9: 8. DOI: 10.3390/mi9010008.
  22. [22] N. Nivedita and I. Papautsky, (2013) “Continuous separation of blood cells in spiral microfluidic devices" Biomicrofluidics 7: 054101. DOI: 10.1063/1.4819275.
  23. [23] M.M.Villone, M. Trofa, M. A. Hulsen, and P. L. Maf fettone, (2017) “Numerical design of a T-shaped microflu idic device for deformability-based separation of elastic capsules and soft beads" Physical Review E 96: 053103. DOI: 10.1103/PhysRevE.96.053103.
  24. [24] A. Shamloo, S. Abdorahimzadeh, and R. Nasiri, (2019) “Exploring contraction–expansion inertial microfluidic-based particle separation devices integrated with curved channels" AIChE Journal 65: e16741. DOI: 10.1002/aic.16741.
  25. [25] M.Tanveer, E. Su Lim, and K.-Y. Kim, (2021) “Effects of channel geometry and electrode architecture on reactant transportation in membraneless microfluidic fuel cells: A review" Fuel 298: 120818. DOI: 10.1016/j.fuel.2021.120818.
  26. [26] A. Lenshof and T. Laurell, (2010) “Continuous separa tion of cells and particles in microfluidic systems" Chemi cal Society Reviews 39: 1203. DOI: 10.1039/b915999c.
  27. [27] E.L.Tóth, E. Holczer, D. Földesi, Z. Kókai, M. Juhász, and A. Farkas, (2017) “Experimental study of two-phase f low in T-junction microfluidic devices– Interaction be tween T-junction and consecutive bend" International Journal of Multiphase Flow 97: 20–31. DOI: 10.1016/j.ijmultiphaseflow.2017.07.004.
  28. [28] J.You,L.Flores,M.Packirisamy,andI.Stiharu,(2005) “Modeling the Effect of Channel Bends on Microfluidic Flow":
  29. [29] A. Mashhadian and A. Shamloo, (2019) “Inertial mi crofluidics: A method for fast prediction of focusing pat tern of particles in the cross section of the channel" An alytica Chimica Acta 1083: 137–149. DOI: 10.1016/j.aca.2019.06.057.
  30. [30] M.Asghari, M. Serhatlioglu, R. Saritas, M. T. Guler, and C. Elbuken, (2019) “Tape’n roll inertial microflu idics" Sensors and Actuators A: Physical 299: 111630. DOI: 10.1016/j.sna.2019.111630.
  31. [31] R. Natu, S. Guha, S. A. R. Dibaji, and L. Herbertson, (2020) “Assessment of Flow through Microchannels for Inertia-Based Sorting: Steps toward Microfluidic Medical Devices" Micromachines 11(10): 886. DOI: 10.3390/mi11100886.
  32. [32] R. Natu, L. Herbertson, G. Sena, K. Strachan, and S. Guha, (2023) “A Systematic Analysis of Recent Technol ogy Trends of Microfluidic Medical Devices in the United States" Micromachines 14(7): 1293. DOI: 10.3390/mi14071293.
  33. [33] A. K. Au, W. Huynh, L. F. Horowitz, and A. Folch, (2016) “3D-Printed Microfluidics" Angew Chem Int Ed 55(12): 3862–3881. DOI: 10.1002/anie.201504382.
  34. [34] G.Gaaletal., (2017) “Simplified fabrication of integrated microfluidic devices using fused deposition modeling 3D printing" Sensors and Actuators B: Chemical 242: 35–40. DOI: 10.1016/j.snb.2016.10.110.
  35. [35] S.Waheedetal.,(2016)“3Dprintedmicrofluidic devices: enablers and barriers" Lab Chip 16(11): 1993–2013. DOI: 10.1039/C6LC00284F.
  36. [36] B. S. Rupal, E. A. Garcia, C. Ayranci, and A. J. Qureshi, (2019) “3D Printed 3D-Microfluidics: Recent Developments and Design Challenges" JID 22(1): 5–20. DOI: 10.3233/jid-2018-0001.
  37. [37] J.Collingwood,K.DeSilva, andK.Arif, (2023) “High speed 3D printing for microfluidics: Opportunities and challenges" Materials Today: Proceedings: DOI: 10.1016/j.matpr.2023.05.683.
  38. [38] N. Bhattacharjee, A. Urrios, S. Kang, and A. Folch, (2016) “The upcoming 3D-printing revolution in mi crofluidics" Lab Chip 16(10): 1720–1742. DOI: 10.1039/C6LC00163G.
  39. [39] J. L. Moore, A. McCuiston, I. Mittendorf, R. Ottway, and R. D. Johnson, (2011) “Behavior of capillary valves in centrifugal microfluidic devices prepared by three dimensional printing" Microfluid Nanofluid 10(4): 877–888. DOI: 10.1007/s10404-010-0721-1.
  40. [40] K. Aslantas and L. K. H. Alatrushi, (2021) “Experi mental Study on the Effect of Cutting Tool Geometry in Micro-Milling of Inconel 718" Arab J Sci Eng 46(3): 2327–2342. DOI: 10.1007/s13369-020-05034-z.
  41. [41] P. J. Kitson, M. H. Rosnes, V. Sans, V. Dragone, and L. Cronin, (2012) “Configurable 3D-Printed millifluidic and microfluidic ’lab on a chip’ reactionware devices" Lab Chip 12(18): 3267. DOI: 10.1039/c2lc40761b.
  42. [42] P. J. Kitson, M. D. Symes, V. Dragone, and L. Cronin, (2013) “Combining 3D printing and liquid handling to produce user-friendly reactionware for chemical synthesis and purification" Chem. Sci. 4(8): 3099–3103. DOI: 10.1039/C3SC51253C.
  43. [43] M.K.GelberandR.Bhargava,(2015)“Monolithic mul tilayer microfluidics via sacrificial molding of 3D-printed isomalt" Lab Chip 15(7): 1736–1741. DOI: 10.1039/C4LC01392A.
  44. [44] M. Sharafeldin, K. Kadimisetty, K. S. Bhalerao, T. Chen, and J. F. Rusling, (2020) “3D-Printed Im munosensor Arrays for Cancer Diagnostics" Sensors 20(16): 4514. DOI: 10.3390/s20164514.
  45. [45] Y.XiaandG.M.Whitesides,(1998) “Soft Lithography" Angewandte Chemie International Edition 37(5): 550–575. DOI: 10.1002/(SICI)1521-3773(19980316)37:53.0.CO;2-G.
  46. [46] J. C. McDonald et al., (2000) “Fabrication of microflu idic systems in poly(dimethylsiloxane)" Electrophoresis 21(1): 27–40. DOI: 10.1002/(SICI)1522-2683(20000101) 21:13.0.CO;2-C.
  47. [47] D. Qin, Y. Xia, and G. M. Whitesides, (2010) “Soft lithography for micro- and nanoscale patterning" Nat Protoc 5(3): 491–502. DOI: 10.1038/nprot.2009.234.
  48. [48] J. Kajtez et al., (2020) “3D-Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural De vices" Advanced Science 7(16): 2001150. DOI: 10.1002/advs.202001150.
  49. [49] V. Faustino, S. O. Catarino, R. Lima, and G. Minas, (2016) “Biomedical microfluidic devices by using low-cost fabrication techniques: A review" Journal of Biome chanics 49(11): 2280–2292. DOI: 10.1016/j.jbiomech. 2015.11.031.
  50. [50] L. C. Faustino, J. P. C. Cunha, W. Cantanhêde, L. T. Kubota, and E. T. S. Gerôncio, (2023) “3D-printed holder for drawing highly reproducible pencil-on-paper electrochemical devices" Microchim Acta 190(8): 338. DOI: 10.1007/s00604-023-05920-x.
  51. [51] S. Scott and Z. Ali, (2021) “Fabrication Methods for Microfluidic Devices: An Overview" Micromachines 12(3): 319. DOI: 10.3390/mi12030319.
  52. [52] R. N. Valani, B. Harding, and Y. M. Stokes, (2023) “Utilizing bifurcations to separate particles in spiral in ertial microfluidics" Physics of Fluids 35(1): 011703. DOI: 10.1063/5.0132151.
  53. [53] S. J. Haward, C. C. Hopkins, S. Varchanis, and A. Q. Shen, (2021) “Bifurcations in flows of complex fluids around microfluidic cylinders" Lab Chip 21(21): 4041 4059. DOI: 10.1039/D1LC00128K.
  54. [54] W. Tang, S. Zhu, D. Jiang, L. Zhu, J. Yang, and N. Xiang, (2020) “Channel innovations for inertial microflu idics" Lab Chip 20(19): 3485–3502. DOI: 10.1039/D0LC00714E.
  55. [55] K. Erdem, V. E. Ahmadi, A. Kosar, and L. Kuddusi, (2020) “Differential Sorting of Microparticles Using Spi ral Microchannels with Elliptic Configurations" Micro machines 11(4): 412. DOI: 10.3390/mi11040412.