- [1] A. Bohr, S. Colombo, and H. Jensen. “Future of mi crofluidics in research and in the market”. In: Mi crofluidics for Pharmaceutical Applications. Elsevier, 2019, 425–465. DOI: 10.1016/B978-0-12-812659-2.00016-8.
- [2] I. Ahmed, H. M. N.Iqbal, and Z. Akram, (2018) “Mi crofluidics Engineering: Recent Trends, Valorization, and Applications" Arab Journal of Science and Engineer ing 43: 23–32. DOI: 10.1007/s13369-017-2662-4.
- [3] A. P. Kuo, N. Bhattacharjee, Y. Lee, K. Castro, Y. T. Kim, and A. Folch, (2019) “High-Precision Stereolithog raphy of Biomicrofluidic Devices" Advanced Materi als Technologies 4: 1800395. DOI: 10.1002/admt.201800395.
- [4] S. J. Gräfner, P. Y. Wu, and C. R. Kao, (2022) “Flow in a microchannel filled with arrays of numerous pillars" International Journal of Heat and Fluid Flow 97: 109045. DOI: 10.1016/j.ijheatfluidflow.2022.109045.
- [5] H. Mohamadzade Sani, M. Falahi, K. Aieneh, S. M. Hosseinalipour, S. Salehi, and S. Asiaei, (2024) “Per formance optimization of droplet formation and break up within a microfluidic device– Numerical and experimental evaluation" International Journal of Heat and Fluid Flow 106: 109266. DOI: 10.1016/j.ijheatfluidflow.2023.109266.
- [6] I. Khan, R. Zulkifli, T. Chinyoka, T. Muhammad, and I. Ali, (2024) “Numerical study of electro-osmotic thermal influence in a porous medium saturated micro-channel of a reactive third-grade fluid (TGF) with thermal radia tion and exothermic reaction" International Journal of Heat and Fluid Flow 108: 109436. DOI: 10.1016/j.ijheatfluidflow.2024.109436.
- [7] X. Dong, L. Liu, Y. Tu, J. Zhang, G. Miao, and L. e. a. Zhang, (2021) “Rapid PCR powered by microfluidics: A quick review under the background of COVID-19 pan demic" Trends in Analytical Chemistry 143: 116377. DOI: 10.1016/j.trac.2021.116377.
- [8] Q.Li, X. Zhou, Q. Wang, W. Liu, and C. Chen, (2023) “Microfluidics for COVID-19: From Current Work to Fu ture Perspective" Biosensors 13: 163. DOI: 10.3390/bios13020163.
- [9] L. Xu, A. Wang, X. Li, and K. W. Oh, (2020) “Passive micropumping in microfluidics for point-of-care testing" Biomicrofluidics 14: 031503. DOI: 10.1063/5.0002169.
- [10] S. O. Catarino, R. O. Rodrigues, D. Pinho, J. M. Mi randa, G. Minas, and R. Lima, (2019) “Blood Cells Sep aration and Sorting Techniques of Passive Microfluidic Devices: From Fabrication to Applications" Microma chines 10: 593.
- [11] V. Kumar and J. Sarkar, (2022) “Numerical Analysis on Hydrothermal Behavior of Various Ribbed Minichan nel Heat Sinks with Different Hybrid Nanofluids" Arab Journal of Science and Engineering 47: 6209–6221. DOI: 10.1007/s13369-021-06119-z.
- [12] K.Jiang, D. S. Jokhun, and C. T. Lim, (2021) “Microflu idic detection of human diseases: From liquid biopsy to COVID-19 diagnosis" Journal of Biomechanics 117: 110235. DOI: 10.1016/j.jbiomech.2021.110235.
- [13] Y. Zhang, T. Zheng, L. Wang, L. Feng, M. Wang, and Z. e. a. Zhang, (2021) “From passive to active sorting in microfluidics: A review" Reviews on Advanced Mate rials Science 60: 313–324. DOI: 10.1515/rams-20200044.
- [14] A. Hochstetter, (2020) “Lab-on-a-Chip Technologies for the Single Cell Level: Separation, Analysis, and Di agnostics" Micromachines 11: 468. DOI: 10.3390/mi11050468.
- [15] H. Abdulla Yusuf, S. M. Z. Hossain, A. A. Khamis, H. T. Radhi, A. S. Jaafar, and P. R. Fielden, (2021) “A Hybrid Microfluidic Differential Carbonator Approach for Enhancing Microalgae Growth: Inline Monitoring Through Optical Imaging" Arab Journal of Science andEngineering46: 6765–6774. DOI: 10.1007/s13369 021-05353-9.
- [16] K. Cheng, J. Guo, Y. Fu, and J. Guo, (2021) “Active microparticle manipulation: Recent advances" Sensors and Actuators A: Physical 322: 112616. DOI: 10.1016/j.sna.2021.112616.
- [17] N.Pamme,(2007) “Continuous flow separations in mi crofluidic devices" Lab Chip 7: 1644. DOI: 10.1039/ b712784g.
- [18] A. A.S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, (2010) “Microfluidics for cell separation" Medical Biological Engineering Computing 48: 999–1014. DOI: 10.1007/s11517-010-0611-4.
- [19] D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, and W. e. a. Lee, (2010) “Label-free cell sep aration and sorting in microfluidic systems" Analytical and Bioanalytical Chemistry 397: 3249–3267. DOI: 10.1007/s00216-010-3721-9.
- [20] X. Yang, O. Forouzan, T. P. Brown, and S. S. Shevko plyas, (2012) “Integrated separation of blood plasma from whole blood for microfluidic paper-based analyti cal devices" Lab Chip 12: 274–280. DOI: 10.1039/C1LC20803A.
- [21] M.Javaid, T. Cheema, and C. Park, (2017) “Analysis of Passive Mixing in a Serpentine Microchannel with Sinusoidal Side Walls" Micromachines 9: 8. DOI: 10.3390/mi9010008.
- [22] N. Nivedita and I. Papautsky, (2013) “Continuous separation of blood cells in spiral microfluidic devices" Biomicrofluidics 7: 054101. DOI: 10.1063/1.4819275.
- [23] M.M.Villone, M. Trofa, M. A. Hulsen, and P. L. Maf fettone, (2017) “Numerical design of a T-shaped microflu idic device for deformability-based separation of elastic capsules and soft beads" Physical Review E 96: 053103. DOI: 10.1103/PhysRevE.96.053103.
- [24] A. Shamloo, S. Abdorahimzadeh, and R. Nasiri, (2019) “Exploring contraction–expansion inertial microfluidic-based particle separation devices integrated with curved channels" AIChE Journal 65: e16741. DOI: 10.1002/aic.16741.
- [25] M.Tanveer, E. Su Lim, and K.-Y. Kim, (2021) “Effects of channel geometry and electrode architecture on reactant transportation in membraneless microfluidic fuel cells: A review" Fuel 298: 120818. DOI: 10.1016/j.fuel.2021.120818.
- [26] A. Lenshof and T. Laurell, (2010) “Continuous separa tion of cells and particles in microfluidic systems" Chemi cal Society Reviews 39: 1203. DOI: 10.1039/b915999c.
- [27] E.L.Tóth, E. Holczer, D. Földesi, Z. Kókai, M. Juhász, and A. Farkas, (2017) “Experimental study of two-phase f low in T-junction microfluidic devices– Interaction be tween T-junction and consecutive bend" International Journal of Multiphase Flow 97: 20–31. DOI: 10.1016/j.ijmultiphaseflow.2017.07.004.
- [28] J.You,L.Flores,M.Packirisamy,andI.Stiharu,(2005) “Modeling the Effect of Channel Bends on Microfluidic Flow":
- [29] A. Mashhadian and A. Shamloo, (2019) “Inertial mi crofluidics: A method for fast prediction of focusing pat tern of particles in the cross section of the channel" An alytica Chimica Acta 1083: 137–149. DOI: 10.1016/j.aca.2019.06.057.
- [30] M.Asghari, M. Serhatlioglu, R. Saritas, M. T. Guler, and C. Elbuken, (2019) “Tape’n roll inertial microflu idics" Sensors and Actuators A: Physical 299: 111630. DOI: 10.1016/j.sna.2019.111630.
- [31] R. Natu, S. Guha, S. A. R. Dibaji, and L. Herbertson, (2020) “Assessment of Flow through Microchannels for Inertia-Based Sorting: Steps toward Microfluidic Medical Devices" Micromachines 11(10): 886. DOI: 10.3390/mi11100886.
- [32] R. Natu, L. Herbertson, G. Sena, K. Strachan, and S. Guha, (2023) “A Systematic Analysis of Recent Technol ogy Trends of Microfluidic Medical Devices in the United States" Micromachines 14(7): 1293. DOI: 10.3390/mi14071293.
- [33] A. K. Au, W. Huynh, L. F. Horowitz, and A. Folch, (2016) “3D-Printed Microfluidics" Angew Chem Int Ed 55(12): 3862–3881. DOI: 10.1002/anie.201504382.
- [34] G.Gaaletal., (2017) “Simplified fabrication of integrated microfluidic devices using fused deposition modeling 3D printing" Sensors and Actuators B: Chemical 242: 35–40. DOI: 10.1016/j.snb.2016.10.110.
- [35] S.Waheedetal.,(2016)“3Dprintedmicrofluidic devices: enablers and barriers" Lab Chip 16(11): 1993–2013. DOI: 10.1039/C6LC00284F.
- [36] B. S. Rupal, E. A. Garcia, C. Ayranci, and A. J. Qureshi, (2019) “3D Printed 3D-Microfluidics: Recent Developments and Design Challenges" JID 22(1): 5–20. DOI: 10.3233/jid-2018-0001.
- [37] J.Collingwood,K.DeSilva, andK.Arif, (2023) “High speed 3D printing for microfluidics: Opportunities and challenges" Materials Today: Proceedings: DOI: 10.1016/j.matpr.2023.05.683.
- [38] N. Bhattacharjee, A. Urrios, S. Kang, and A. Folch, (2016) “The upcoming 3D-printing revolution in mi crofluidics" Lab Chip 16(10): 1720–1742. DOI: 10.1039/C6LC00163G.
- [39] J. L. Moore, A. McCuiston, I. Mittendorf, R. Ottway, and R. D. Johnson, (2011) “Behavior of capillary valves in centrifugal microfluidic devices prepared by three dimensional printing" Microfluid Nanofluid 10(4): 877–888. DOI: 10.1007/s10404-010-0721-1.
- [40] K. Aslantas and L. K. H. Alatrushi, (2021) “Experi mental Study on the Effect of Cutting Tool Geometry in Micro-Milling of Inconel 718" Arab J Sci Eng 46(3): 2327–2342. DOI: 10.1007/s13369-020-05034-z.
- [41] P. J. Kitson, M. H. Rosnes, V. Sans, V. Dragone, and L. Cronin, (2012) “Configurable 3D-Printed millifluidic and microfluidic ’lab on a chip’ reactionware devices" Lab Chip 12(18): 3267. DOI: 10.1039/c2lc40761b.
- [42] P. J. Kitson, M. D. Symes, V. Dragone, and L. Cronin, (2013) “Combining 3D printing and liquid handling to produce user-friendly reactionware for chemical synthesis and purification" Chem. Sci. 4(8): 3099–3103. DOI: 10.1039/C3SC51253C.
- [43] M.K.GelberandR.Bhargava,(2015)“Monolithic mul tilayer microfluidics via sacrificial molding of 3D-printed isomalt" Lab Chip 15(7): 1736–1741. DOI: 10.1039/C4LC01392A.
- [44] M. Sharafeldin, K. Kadimisetty, K. S. Bhalerao, T. Chen, and J. F. Rusling, (2020) “3D-Printed Im munosensor Arrays for Cancer Diagnostics" Sensors 20(16): 4514. DOI: 10.3390/s20164514.
- [45] Y.XiaandG.M.Whitesides,(1998) “Soft Lithography" Angewandte Chemie International Edition 37(5): 550–575. DOI: 10.1002/(SICI)1521-3773(19980316)37:53.0.CO;2-G.
- [46] J. C. McDonald et al., (2000) “Fabrication of microflu idic systems in poly(dimethylsiloxane)" Electrophoresis 21(1): 27–40. DOI: 10.1002/(SICI)1522-2683(20000101) 21:13.0.CO;2-C.
- [47] D. Qin, Y. Xia, and G. M. Whitesides, (2010) “Soft lithography for micro- and nanoscale patterning" Nat Protoc 5(3): 491–502. DOI: 10.1038/nprot.2009.234.
- [48] J. Kajtez et al., (2020) “3D-Printed Soft Lithography for Complex Compartmentalized Microfluidic Neural De vices" Advanced Science 7(16): 2001150. DOI: 10.1002/advs.202001150.
- [49] V. Faustino, S. O. Catarino, R. Lima, and G. Minas, (2016) “Biomedical microfluidic devices by using low-cost fabrication techniques: A review" Journal of Biome chanics 49(11): 2280–2292. DOI: 10.1016/j.jbiomech. 2015.11.031.
- [50] L. C. Faustino, J. P. C. Cunha, W. Cantanhêde, L. T. Kubota, and E. T. S. Gerôncio, (2023) “3D-printed holder for drawing highly reproducible pencil-on-paper electrochemical devices" Microchim Acta 190(8): 338. DOI: 10.1007/s00604-023-05920-x.
- [51] S. Scott and Z. Ali, (2021) “Fabrication Methods for Microfluidic Devices: An Overview" Micromachines 12(3): 319. DOI: 10.3390/mi12030319.
- [52] R. N. Valani, B. Harding, and Y. M. Stokes, (2023) “Utilizing bifurcations to separate particles in spiral in ertial microfluidics" Physics of Fluids 35(1): 011703. DOI: 10.1063/5.0132151.
- [53] S. J. Haward, C. C. Hopkins, S. Varchanis, and A. Q. Shen, (2021) “Bifurcations in flows of complex fluids around microfluidic cylinders" Lab Chip 21(21): 4041 4059. DOI: 10.1039/D1LC00128K.
- [54] W. Tang, S. Zhu, D. Jiang, L. Zhu, J. Yang, and N. Xiang, (2020) “Channel innovations for inertial microflu idics" Lab Chip 20(19): 3485–3502. DOI: 10.1039/D0LC00714E.
- [55] K. Erdem, V. E. Ahmadi, A. Kosar, and L. Kuddusi, (2020) “Differential Sorting of Microparticles Using Spi ral Microchannels with Elliptic Configurations" Micro machines 11(4): 412. DOI: 10.3390/mi11040412.