Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Mohammad Assaleh1This email address is being protected from spambots. You need JavaScript enabled to view it., George G. Chase1, Tinoush Dinn2, and Martin Panchula2

1Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH 44325, USA.

2BASF Corporation, 23800 Mercantile Rd, Beachwood, OH 44122, USA.


 

 

Received: March 1, 2024
Accepted: April 22, 2024
Publication Date: June 11, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202504_28(4).0009  


Water separation from diesel fuel is critical for automotive performance and longevity due to its adverse effects on engines. Conventional methods like gravity settling fail with emulsified water due to small droplet size and stable interfaces. Electric field devices, such as electrocoalescers, are commonly employed to coalesce water drops for easier separation. However, these typically require high voltages and large gap distances between electrodes, with coalescence primarily occurring within the bulk fluid. Significant coalescence on electrode surfaces can be achieved through electrowetting, particularly when drops contact both electrodes, necessitating close electrode proximity. This study presents experimental water-ULSD dispersion separation using an electrowet coalescer device (EWC) consisting of two porous wire mesh electrodes with a small gap. Compact and operated at voltages below 250V, the EWC’s performance was evaluated by varying design and operating parameters. Under optimal conditions, it increased average water drop size from 50 to over 1600 microns, and when integrated with a setting tank, improved gravity separation efficiency from 6% to 95%.


Keywords: Coalescence, Electrowetting, Water-diesel emulsion, Gravitational separation


  1. [1] W. Stone, G. Bessee, and C. Stanfel, (2009) “Diesel Fuel/Water Separation Test Methods—Where We Are and Where We Are Going" SAE Int J Fuels Lubr 2(1): 317–323. DOI: 10.4271/2009-01-0875.
  2. [2] C. Stanfel, (2009) “Fuel filtration: Protecting the diesel engine" Filtration & Separation 46(3): 22–25. DOI: 10.1016/S0015-1882(09)70124-7.
  3. [3] M. Nadeem, C. Rangkuti, K. Anuar, M. R. U. Haq, I. B. Tan, and S. S. Shah, (2006) “Diesel engine performance and emission evaluation using emulsified fuels stabilized by conventional and gemini surfactants" Fuel 85(14–15): 2111–2119. DOI: 10.1016/j.fuel.2006.03.013.
  4. [4] T. Kadota and H. Yamasaki, (2002) “Recent advances in the combustion of water fuel emulsion" Prog Energy Combust Sci 28(5): 385–404. DOI: 10.1016/S0360- 1285(02)00005-9.
  5. [5] A. M. Ithnin, H. Noge, H. A. Kadir, and W. Jazair, (2014) “An overview of utilizing water-in-diesel emulsion fuel in diesel engine and its potential research study" Journal of the Energy Institute 87(4): 273–288. DOI: 10.1016/J.JOEI.2014.04.002.
  6. [6] M. Hosseini, (2016) “Coalescence behaviour of water droplets in water-oil interface under pulsatile electric fields" Chin J Chem Eng 24(9): 1147–1153. DOI: 10.1016/J.CJCHE.2016.04.007.
  7. [7] P. S. Kulkarni, S. U. Patel, and G. G. Chase, (2012) “Layered hydrophilic/hydrophobic fiber media for water-inoil coalescence" Sep Purif Technol 85: 157–164. DOI: 10.1016/j.seppur.2011.10.004.
  8. [8] O. J. Ajogbeje, A. Stammitti-Scarpone, S. Cao, T. Akanni, S. Ng, and E. J. Acosta, (2021) “Separation of Emulsions with Fibrous Filter-Coalescers" Langmuir 37(51): DOI: 10.1021/ACS.LANGMUIR.1C00333.
  9. [9] R. C. Brown, (1995) “Air filtration: an integrated approach to the theory and applications of fibrous filters" J Aerosol Sci 26(1): 171.
  10. [10] S. S. Sareen, P. M. Rose, R. C. Gudesen, and R. C. Kintner, (1966) “Coalescence in fibrous beds" AIChE Journal 12(6): 1045–1050. DOI: 10.1002/AIC.690120603.
  11. [11] N. N. Zaki, R. G. Carbonell, and P. K. Kilpatrick, (2003) “A Novel Process for Demulsification of Water-inCrude Oil Emulsions by Dense Carbon Dioxide" Ind Eng Chem Res 42(25): 6661–6672. DOI: 10.1021/IE0303597.
  12. [12] S. Bansal, V. von Arnim, T. Stegmaier, and H. Planck, (2011) “Effect of fibrous filter properties on the oil-inwater-emulsion separation and filtration performance" J Hazard Mater 190(1–3): 45–50. DOI: 10.1016/J.JHAZMAT.2011.01.134.
  13. [13] D. Thomas, P. Penicot, P. Contal, D. Leclerc, and J. Vendel, (2001) “Clogging of fibrous filters by solid aerosol particles Experimental and modelling study" Chem Eng Sci 56(11): 3549–3561. DOI: 10.1016/S0009-2509(01)00041-0.
  14. [14] A. D. Gadhave and G. G. Chase, (2021) “Coalescence of emulsified water drops in ULSD using a steel mesh electrowet coalescer" Sep Purif Technol 254: 117675. DOI: 10.1016/J.SEPPUR.2020.117675.
  15. [15] V. G. Levich. Physicochemical hydrodynamics. Englewood Cliffs, N.J: Prentice-Hall, 1962.
  16. [16] S. Mhatre, V. Vivacqua, M. Ghadiri, A. M. Abdullah, M. J. Al-Marri, A. Hassanpour, B. Hewakandamby, B. Azzopardi, and B. Kermani, (2015) “Electrostatic phase separation: A review" Chemical Engineering Research and Design 96: 177–195. DOI: 10.1016/J.CHERD.2015.02.012.
  17. [17] Y. Li, L. Cao, D. Hu, and C. Yang, (2017) “Uncommon wetting on a special coating and its relevance to coalescence separation of emulsified water from diesel fuel" Sep Purif Technol 176: 313–322. DOI: 10.1016/J.SEPPUR.2016.11.058.
  18. [18] H. Gong, W. Li, X. Zhang, Y. Peng, B. Yu, and Y. Mou, (2020) “Simulation of the coalescence and breakup of water-in-oil emulsion in a separation device strengthened by coupling electric and swirling centrifugal fields" Sep Purif Technol 238: 116397. DOI: 10.1016/J.SEPPUR.2019.116397.
  19. [19] I. G. Harpur, N. J. Wayth, A. G. Bailey, M. T. Thew, T. J. Williams, and O. Urdahl, (1997) “Destabilisation of water-in-oil emulsions under the influence of an A.C. electric field: Experimental assessment of performance" J Electrostat 40–41: 135–140. DOI: 10.1016/S0304-3886(97)00027-2.
  20. [20] J. S. Eow and M. Ghadiri, (2002) “Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology" Chemical Engineering Journal 85(2–3): 357–368. DOI: 10.1016/S1385-8947(01)00250-9.
  21. [21] T. Hirato, K. Koyama, T. Tanaka, Y. Awakura, and H. Majima, (1991) “Demulsification of Water-in-Oil Emulsion by an Electrostatic Coalescence Method" Materials Transactions, JIM 32(3): 257–263. DOI: 10.2320/MATERTRANS1989.32.257.
  22. [22] D. Yang, Y. Sun, M. Ghadiri, H. Wu, H. Qiao, L. He, X. Luo, and Y. Lü, (2019) “Effect of hydrolyzed polyacrylamide used in polymer flooding on droplet– interface electro-coalescence: Variation of critical electric field strength of partial coalescence" Sep Purif Technol 227: 115737. DOI: 10.1016/J.SEPPUR.2019.115737.
  23. [23] J. S. Eow, M. Ghadiri, A. O. Sharif, and T. J. Williams, (2001) “Electrostatic enhancement of coalescence of water droplets in oil: a review of the current understanding" Chemical Engineering Journal 84(3): 173–192. DOI: 10.1016/S1385-8947(00)00386-7.
  24. [24] P. J. Bailes and S. K. L. Larkai, (1984) “Influence of phase ration on electrostatic coalescence of water-in-oil dispersions" CEGB Res.; (United Kingdom) 62(1):
  25. [25] M. M. Mohammadi, S. Shahhosseini, and M. Bayat, (2014) “Electrocoalescence of binary water droplets falling in oil: Experimental study" Chemical Engineering Research and Design 92(11): 2694–2704. DOI: 10.1016/J.CHERD.2014.01.019.
  26. [26] H. Aryafar and H. P. Kavehpour, (2009) “Electrocoalescence: Effects of DC electric fields on coalescence of drops at planar interfaces" Langmuir 25(21): 12460–12465. DOI: 10.1021/LA902758U.
  27. [27] H. B. Hauertmann, W. Degener, and K. Schogerl, (1989) “Electrostatic Coalescence: Reactor, Process Control, and Important Parameters" Sep Sci Technol 24(3– 4): 253–273. DOI: 10.1080/01496398908049766.
  28. [28] A. T. Yasir, A. H. Hawari, M. Talhami, M. Baune, J. Thöming, and F. Du, (2023) “The impact of electric field on the demulsification efficiency in an electro-coalescence process" J Electrostat 122: 103796. DOI: 10.1016/J.ELSTAT.2023.103796.
  29. [29] S. Less and R. Vilagines, (2012) “The electrocoalescers’ technology: Advances, strengths and limitations for crude oil separation" J Pet Sci Eng 81: 57–63. DOI: 10.1016/J.PETROL.2011.12.003.
  30. [30] S. Mhatre and R. Thaokar, (2015) “Electrocoalescence in non-uniform electric fields: An experimental study" Chemical Engineering and Processing: Process Intensification 96: 28–38. DOI: 10.1016/J.CEP.2015.07.025.
  31. [31] F. Mugele and J.-C. Baret, (2005) “Electrowetting: from basics to applications" J. Phys.: Condens. Matter 17: 705–774. DOI: 10.1088/0953-8984/17/28/R01.
  32. [32] A. S. Aljuhani and G. G. Chase, (2016) “Electrowetting water droplet contact angle relaxation on coated stainless steel plates" International Journal of Surface Science and Engineering 10(3): 224–239. DOI: 10.1504/ IJSURFSE.2016.076995.
  33. [33] C. Quilliet and B. Berge, (2001) “Electrowetting: a recent outbreak" Curr Opin Colloid Interface Sci 6(1): 34–39. DOI: 10.1016/S1359-0294(00)00085-6.
  34. [34] A. Klingner and F. Mugele, (2004) “Electrowettinginduced morphological transitions of fluid microstructures" J Appl Phys 95(5): 2918–2920. DOI: 10.1063/1.1643771.
  35. [35] A. Kumar, I. Ahmad, and M. Pathak, (2023) “Droplet impact on a hydrophobic surface integrated with electrowetting technique" Colloids Surf A Physicochem Eng Asp 656: 130423. DOI: 10.1016/J.COLSURFA.2022.130423.
  36. [36] G. Chase and A. Bandekar, (2016) “Coalescence of Water Drops in Water-ULSD Dispersions via Electrowetting" Journal of Coating Science and Technology 3(1): 41–49. DOI: 10.6000/2369-3355.2016.03.01.5.
  37. [37] I. F. Guha and K. K. Varanasi, (2019) “Low-Voltage Surface Electrocoalescence Enabled by High-K Dielectrics and Surfactant Bilayers for Oil–Water Separation" ACS Applied Materials & Interfaces 11(38): 34812–34818. DOI: 10.1021/acsami.9b01477.
  38. [38] J. Zhou, A. Bandekar, and G. G. Chase, (2018) “Evaluation of electrowet coalescer in series with PVDF-HFP electrospun fiber membranes for separation of water from ULSD" Fuel 225: 111–117. DOI: 10.1016/J.FUEL.2018.03.142.
  39. [39] É. Ruiz-Gutiérrez and R. Ledesma-Aguilar, (2019) “Lattice-Boltzmann Simulations of Electrowetting Phenomena" Langmuir 35(14): 4849–4859. DOI: 10.1021/ACS.LANGMUIR.9B00098.
  40. [40] S. Fu, G. Deng, H. Dong, Y. Sun, Y. Hu, F. Zhou, and H. Yaun, (2023) “Numerical simulation of oil dewatering in a disc centrifuge based on PBM model" Exp Comput Multiph Flow 5(2): 212–220. DOI: 10.1007/S42757- 022-0137-7.
  41. [41] N. Ayuba, R. de Borba Buhler, L. S. da Silva, and T. J. Lopes, (2019) “Application of density-viscosity in predicting oil-water flow profile in horizontal pipe" Petroleum 5(2): 155–162. DOI: 10.1016/J.PETLM.2018.12.001.
  42. [42] Z. Qi, Z. Sun, N. Li, Q. Chen, W. Liu, W. Li, and J. Sun, (2023) “Electrophoretic coalescence behavior of oil droplets in oil-in-water emulsions containing SDS under DC electric field: A molecular dynamics study" Fuel 338: 127258. DOI: 10.1016/j.fuel.2022.127258.
  43. [43] X. Luo, H. Yin, J. Ren, H. Yan, Y. Lü, and L. He, (2019) “Electrocoalescence criterion of conducting droplets suspended in a viscous fluid" The Journal of Physical Chemistry C 123(32): 19588–19595. DOI: 10.1021/acs.jpcc.9b04357.
  44. [44] Y. Chen, S. Narayan, and C. S. Dutcher, (2020) “Phasedependent surfactant transport on the microscale: Interfacial tension and droplet coalescence" Langmuir 36(49): 14904–14923. DOI: 10.1021/acs.langmuir.0c02476.
  45. [45] C. Lesaint, W. R. Glomm, L. E. Lundgaard, and J. Sjöblom, (2009) “Dehydration efficiency of AC electrical fields on water-in-model-oil emulsions" Colloids Surf A Physicochem Eng Asp 352(1–3): 63–69. DOI: 10.1016/J.COLSURFA.2009.09.051.
  46. [46] T. J. Williams and A. G. Bailey, (1986) “Changes in the size distribution of a water-in-oil emulsion due to electric field induced coalescence" IEEE Transactions on industry applications (3): 536–541. DOI: 10.1109/TIA.1986.4504755.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.