Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Hisham A. Maddah This email address is being protected from spambots. You need JavaScript enabled to view it.

Department of Chemical Engineering, King Abdulaziz University, Rabigh, Saudi Arabia


 

Received: May 13, 2019
Accepted: October 25, 2019
Download Citation: ||https://doi.org/10.6180/jase.202003_23(1).0009  

ABSTRACT


Activated carbon filtration follows the same adsorption principle where adsorbent molecules attach to adsorbate surface. Activated carbon cloth was selected for Sodium Chloride (NaCl) removal from water and it was designed as if the carbon filter was placed before a membrane element. Investigated parameters included adsorption cycles, initial salt concentration, and applied electric potential. A brackish water of a TDS between 1000 – 3600 mg/L was prepared synthetically. Collected data were fitted to the Freundlich isotherm model and showed an expected linear relationship. It was established that adsorption rate increases with increasing adsorbate initial concentration, treatment cycles and with applying an electric potential. Studied samples ACC-1, ACC-2, ACC-3, ACC-1E, ACC-2E, and ACC-3E (E refers to an applied 1.2 V potential) showed accumulated rejections of 3.94%, 6.44%, 6.74%, 9.35%, 11.56% and 12.24%, respectively. Results implied that it is possible to place ACCs before membrane units in industrial and water treatment plants for treatment enhancement and membrane protection from possible fouling.


Keywords: Activated carbon, Membrane Filtration, Adsorption, Sodium chloride.



REFERENCES


  1. [1] Maddah, H., and A. Chogle (2016) Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation, Appl. Water Sci. 7(6), 2637–2651.
  2. [2] Maddah, H. A., et al. (2017) Determination of the treatment efficiency of different commercial membrane modules for the treatment of groundwater, J. Mater. Environ. Sci. 8(6), 2006–2012.
  3. [3] Maddah, H. A., and A. S. Alzhrani (2017) Quality monitoring of various local and imported brands of bottled drinking water in Saudi Arabia, World J. Eng. Technol. 5(4), 551–563. doi: 10.4236/wjet.2017.54047
  4. [4] Maddah, H. A., and A. M. Chogle (2015) Applicability of low pressure membranes for wastewater treatment with cost study analyses, Membr. Water Treat. 6(6), 477–488. doi: 10.12989/mwt.2015.6.6.477
  5. [5] Strathmann H, D. E., and L. Giorno (2006) An Introduction to Membrane Science and Technology, Roma: CNR.
  6. [6] Fane, A. G. (1996) Membranes for water production and wastewater reuse, Desalination 106(1–3), 1–9. doi: 10.1016/0011-9164(96)00085-9
  7. [7] Qureshi, B. A., S. M. Zubair, A. K. Sheikh, A. Bhujle, and S. Dubowsky (2013) Design and performance evaluation of reverse osmosis desalination systems: an emphasis on fouling modeling, Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.06.058
  8. [8] Van der Bruggen, B., and C. Vandecasteele (2002) Distillation vs. membrane filtration: overview of process evolutions in seawater desalination, Desalination. doi: 10.1016/S0011-9164(02)00259-X
  9. [9] Yurekli, Y. (2016) Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes, J. Hazard. Mater. doi: 10.1016/ j.jhazmat.2016.01.064
  10. [10] Maddah, M., and H. A. Almughwi (2017) Application of the solution-diffusion model to optimize water flux in reverse osmosis desalination plants, AWWA/AMTA Membrane Technology Conference and Exposition.
  11. [11] Hegazi, H. A. (2013) Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents, HBRC J. doi: 10.1016/j.hbrcj.2013.08.004
  12. [12] Karnib, M., A. Kabbani, H. Holail, and Z. Olama (2014) Heavy metals removal using activated carbon, silica and silica activated carbon composite, Energy Procedia. doi: 10.1016/j.egypro.2014.06.014
  13. [13] Fil, B. A., M. T. Yilmaz, S. Bayar, and M. T. Elkoca (2014) Investigation of adsorption of the dyestuff astrazon red violet 3rn (basic violet 16) on montmorillonite clay, Brazilian J. Chem. Eng. doi: 10.1590/ S0104-66322014000100016
  14. [14] Lemley A, K. B., and L. Wagenet (1995) Activated Carbon Treatment of Drinking Water, New York.
  15. [15] Mohamad Said, K. A., et al. (2017) Effect of activated carbon in polysufone-polyethyleneimine-silver composite membrane towards adsorption of chromium (Cr), lead (Pb), silver (Ag) and cadmium (Cd) in synthetic wastewater, J. Mater. Environ. Sci.
  16. [16] Freundlich, H. M. F. (1906) Adsorption in solution, Z. Phys. Chem.
  17. [17] Lykins Jr BW, C. R., E. E. Geldreich, J. Q. Adams, and J. C. Ireland (1984) Granular activated carbon for removing nontrihalomethane organics from drinking water.
  18. [18] Lalezary S, M. M., and M. Pirbazari (1986) Evaluating activated carbons for removing low concentrations of taste-and odor-producing organice, Am. Water Work. Assoc. 76–82. doi: 10.1002/j.1551-8833.1986. tb05851.x
  19. [19] Wagenet L, S. M., and K. Mancl (1995) Home water treatment, Natural Resource, Agriculture, and Engineering Service (NRAES).
  20. [20] Voudrias, E. A., R. A. Larson, and V. L. Snoeyink (1985) Effects of activated carbon on the reactions of combined chlorine with phenols, Water Res. doi: 10. 1016/0043-1354(85)90150-2
  21. [21] Maddah, H. A., and M. A. Shihon (2018) Activated carbon cloth for desalination of brackish water using capacitive deionization, Desalination and Water Treatment.
  22. [22] Laxman, K., M. T. Z. Myint, R. Khan, T. Pervez, and J. Dutta (2015) Effect of a semiconductor dielectric coating on the salt adsorption capacity of a porous electrode in a capacitive deionization cell, Electrochim. Acta 166, 329–337. doi: 10.1016/j.electacta.2015.03. 049
  23. [23] Myint, M. T. Z., and J. Dutta (2012) Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach, Desalination 305, 24–30. doi: 10.1016/j.desal.2012.08.010
  24. [24] Ryoo, M. W., J. H. Kim, and G. Seo (2003) Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution, J. Colloid Interface Sci. 264(2), 414–419. doi: 10.1016/S0021-9797(03) 00375-8
  25. [25] Myint, M. T. Z., S. H. Al-Harthi, and J. Dutta (2014) Brackish water desalination by capacitive deionization using zinc oxide micro/nanostructures grafted on activated carbon cloth electrodes, Desalination 344, 236– 242. doi: 10.1016/j.desal.2014.03.037
  26. [26] Chang, L. M., X. Y. Duan, and W. Liu (2011) Preparation and electrosorption desalination performance of activated carbon electrode with titania, Desalination270(1–3), 285–290. doi: 10.1016/j.desal.2011.01.008
  27. [27] Langton, N. H., and D. Matthews (1958) The dielectric constant of zinc oxide over a range of frequencies, Br. J. Appl. Phys. doi: 10.1088/0508-3443/9/11/308
  28. [28] Wypych, A., et al. (2014) Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods, J. Nanomater. doi: 10.1155/ 2014/124814
  29. [29] Shkal, F., S. G. Lopez, D. Slocombe, and A. Porch (2018) Microwave characterization of activated carbons, J. Comput. Commun. doi: 10.4236/jcc.2018. 61012
  30. [30] Behzadi, G., and H. Golnabi (2010) Investigation of conductivity effects on capacitance measurements of water liquids using a cylindrical capacitive sensor, J. Appl. Sci. doi: 10.3923/jas.2010.261.268
  31. [31] Lee, T., Z. A. Zubir, F. M. Jamil, A. Matsumoto, and F. Y. Yeoh (2014) Combustion and pyrolysis of activated carbon fibre from oil palm empty fruit bunch fibre assisted through chemical activation with acid treatment, J. Anal. Appl. Pyrolysis. doi: 10.1016/j.jaap.2014. 10.010
  32. [32] Porada, S., R. Zhao, A. Van Der Wal, V. Presser, and P. M. Biesheuvel (2013) Review on the science and technology of water desalination by capacitive deionization, Progress in Materials Science 58(8), 1388–1442. doi: 10.1016/j.pmatsci.2013.03.005
  33. [33] Suss, M. E., S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, and V. Presser (2015) Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ. Sci. 8(8), 2296–2319. doi: 10.1039/C5EE00519A
  34. [34] Waddington, T. C. (1966) Ionic radii and the method of the undetermined parameter, Trans. Faraday Soc. doi: 10.1039/tf9666201482
  35. [35] Ma, X., P. Chen, M. Zhou, Z. Zhong, F. Zhang, and W. Xing (2017) Tight ultrafiltration ceramic membrane for separation of dyes and mixed salts (both NaCl/ Na2SO4) in textile wastewater treatment, Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b01440
  36. [36] Fatehizadeh, A., E. Taheri, M. M. Amin, M. Mahdavi, and N. Moradi (2018) Sodium and potassium removal from brackish water by nanofiltration membrane: single and binary salt mixtures, Desalin. Water Treat. doi: 10.5004/dwt.2018.21900
  37. [37] Krieg, H. M., S. J. Modise, K. Keizer, and H. W. J. P. Neomagus (2005) Salt rejection in nanofiltration for single and binary salt mixtures in view of sulphate removal, Desalination. doi: 10.1016/j.desal.2004.05. 005