Journal of Applied Science and Engineering

Published by Tamkang University Press


Impact Factor



Peijie Lin1, Lingyan Lin1, Jinling Yu This email address is being protected from spambots. You need JavaScript enabled to view it.1, Shuying Cheng1, Peimin Lu1 and Qiao Zheng1

1Institute of Micro/Nano Devices and Solar Cells, School of Physics & Information Engineering, Fuzhou University, Fuzhou 350108, P.R. China


Received: May 5, 2014
Accepted: August 1, 2014
Publication Date: December 1, 2014

Download Citation: ||  


The performance of the Cu2ZnSnS4 based solar cell is investigated using a simulation program called Solar Cell Capacitance Simulator (SCAPS). The cell structure is based on Cu2ZnSnS4 (CZTS) compound semiconductor as the absorber layer, n-doped and un-doped (i) zinc oxide as the window layer, In2S3 as the buffer layer. We study the influence of the defect density, carrier density, thickness of the CZTS absorber layer, working temperature, In2S3 buffer layer thickness and its carrier density on the cell performance. The simulation results illustrate that the optimal layer thickness is from 2500 to 3000 nm for the absorber layer, and that in the range of 20 to 30 nm for the buffer layer. Besides, controlling the CZTS defect density under 1 x 1013 cm-3 is very necessary for high efficiency CZTS cells. The increased working temperature has a strong influence on the solar cell efficiency and the temperature coefficient is calculated to be about -0.17%/K. An optimal photovoltaic property has been achieved with an efficiency of 19.28% (with Jsc = 23.37 mA/cm2 , Voc = 0.958 V and FF = 86.13%). All these simulation results will give some important guides for feasibly fabricating higher efficiency CZTS solar cells.

Keywords: CZTS, In2S3, SCAPS, Solar Cells


  1. [1] Moholkar, A. V., Shinde, S. S., Babar, A. R., et al., “Development of CZTS Thin Films Solar Cells by Pulsed Laser Deposition: Influence of Pulse Repetition Rate,” Solar Energy, Vol. 85, No. 7, pp. 1354 1363 (2011). doi: 10.1016/j.solener.2011.03.017
  2. [2] Moritake, N., Fukui, Y., Oonuki, M., et al., “Preparation of Cu2ZnSnS4 Thin Film Solar Cells under NonVacuum Condition,” Phys. Status Solidi C, Vol. 6, No. 5, pp. 12331236 (2009). doi: 10.1002/pssc.2008 81158
  3. [3] Katagiri, H., Jimbo, K., Yamada, S., et al., “Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique,” Appl. Phys. Exp, Vol. 1, pp. 041201041202 (2008). doi: 10.1143/APEX.1.041201
  4. [4] Ennaoui, A., Lux-Steiner, M., Weber, A., et al., “Cu2ZnSnS4 Thin Film Solar Cells from Electroplated Precursors: Novel Low-Cost Perspective,” Thin Solid Films, Vol. 517, No. 7, pp. 25112514 (2009). doi: 10.1016/j.tsf.2008.11.061
  5. [5] Wang, K., Gunawan, O., Todorov, T., et al., “Thermally Evaporated Cu2ZnSnS4 Solar Cell,” Appl. Phys. Lett., Vol. 97, p. 143508 (2010). doi: 10.1063/1. 3499284
  6. [6] Katagiri, H., Jimbo, K., Maw, W. S., et al., “Development of CZTS-Based Thin Film Solar Cells,” Thin Solid Films, Vol. 517, No. 7, pp. 24552460 (2009). doi: 10.1016/j.tsf.2008.11.002
  7. [7] Shin, B., Gunawan, O., Zhu, Y., et al., “Thin Film Solar Cell with 8.4% Power Conversion Efficiency Using an Earth-Abundant Cu2ZnSnS4 Absorber,” Prog. Photovolt: Res. Appl., Vol. 21, No. 1, pp. 7276 (2013). doi: 10.1002/pip.1174
  8. [8] Seol, J. S., Lee, S. Y., Lee, J. C., et al., “Electrical and Optical Properties of Cu2ZnSnS4 Thin Films Prepared by RF Magnetron Sputtering Process,” Sol. Energy Mater. Sol. Cells, Vol. 75, No. 12, pp. 155162 (2003). doi: 10.1016/S0927-0248(02)00127-7
  9. [9] Todorov, T. K., Tang, J., Bag, S., et al., “Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu2ZnSn (S,Se)4 Solar Cells,” Adv. Energy Mater, Vol. 3, No. 1, pp. 3438 (2012). doi: 10.1002/aenm.201200348
  10. [10] Pistor, P., Caballero, R., Hariskos, D., et al., “Quality and Stability of Compound Indium Sulphide as Source Material for Buffer Layers in Cu(In,Ga)Se2 Solar Cells,” Sol. Energy Mater. Sol. Cells, Vol. 93, No. 1, pp. 148152 (2009). doi: 10.1016/j.solmat.2008.09. 015
  11. [11] Benchouk, K., Ouerfelli, J., Saadoun, M., et al., “Optical and Electrical Characterization of In2S3 Buffer Layer for Photovoltaics Applications,” Physics Procedia, Vol. 2, No. 3, pp. 971974 (2009). doi: 10.1016/ j.phpro.2009.11.051
  12. [12] Rajeshmon, V. G., Poornima, N., Sudha, K. C., et al., “Modification of the Optoelectronic Properties of Sprayed In2S3 Thin Films by Indium Diffusion for Application as Buffer Layer in CZTS Based Solar Cell,” J. Alloys Comp, Vol. 553, pp. 239244 (2013). doi: 10.1016/j.jallcom.2012.11.106
  13. [13] Repins, I., Contreras, M. A., Egaas, B., et al. “19.9%- Efficient ZnO/CdS/CulnGaSe2 Solar Cell with 81.2% Fill Factor,” Prog. Photovolt: Res. Appl, Vol. 16, No. 3, pp. 235239 (2008). doi: 10.1002/pip.822
  14. [14] Burgelman, M., Nollet, P. and Degrave, S., “Modeling Polycrystalline Semiconductor Solar Cells,” Thin Solid Films, Vol. 361362, pp. 527532 (2000). doi: 10. 1016/S0040-6090(99)00825-1
  15. [15] Marlein, J., Decock, K. and Burgelman, M., “Analysis of Electrical Properities of CIGSSe and Cd-Free CIGSSe Solar Cells,” Thin Solid Films, Vol. 517, No. 7, pp. 23532356 (2009). doi: 10.1016/j.tsf.2008.11. 048
  16. [16] Nollet, P., Burgelman, M. and Degrave, S., “The Back Contact Influence on Characteristics of CdTe/CdS Solar Cells,” Thin Solid Films, Vol. 361362, pp. 293 297 (2000). doi: 10.1016/S0040-6090(99)00760-9
  17. [17] Khelia, S., Verschraegen, J., Burgelman, M., et al., “Numerical Simulation of the Impurity Photovoltaic Effect in Silicon Solar Cells,” Renewable Energy, Vol. 33, No. 2, pp. 293298 (2008). doi: 10.1016/j.renene. 2007.05.027
  18. [18] Hossain, M. I., Vanathan, P. C., Zaman, M., et al., “Prospect of Indium Sulphide as an Alternative to Cadmium Sulphide Buffer Layer in CIS Based Solar Cells from Numerical Analysis,” Chalcogenide Letters, Vol. 8, No. 5, pp. 315324 (2011).



69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.