- [1] OECD Nuclear Energy Agency and OECD Nuclear Energy Agency. Radioactive Waste Management Committee. Geological Disposal of Radioactive Waste: Review of Developments in the Last Decade. Nuclear Energy Agency, Organisation for Economic Cooperation and Development, 2000.
- [2] R. G. Campanella and J. K. Mitchell, (1968) “Influence of temperature variations on soil behavior" Journal of the Soil Mechanics and Foundations Division 94(3):709–734.
- [3] M.-N. Vu, G. Armand, and C. Plua, (2020) “Thermal pressurization coefficient of anisotropic elastic porous media" Rock Mechanics and Rock Engineering 53(4): 2027–2031.
- [4] M. Monfared, P. Delage, J. Sulem, M. Mohajerani, and A. Tang. “Pressurisation thermique dans l’argile de Boom”. In: Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. 2013.
- [5] M. Monfared, J. Sulem, P. Delage, and M. Mohajerani, (2011) “A laboratory investigation on thermal properties of the Opalinus claystone" Rock Mechanics and Rock Engineering 44(6): 735.
- [6] M. Mohajerani, P. Delage, J. Sulem, M. Monfared, A. M. Tang, and B. Gatmiri, (2012) “A laboratory investigation of thermally induced pore pressures in the Callovo-Oxfordian claystone" International Journal of Rock Mechanics and Mining Sciences 52: 112–121.
- [7] P. Braun, P. Delage, S. Ghabezloo, B. Chabot, N. Conil, and M.-N. Vu, (2022) “Inducing tensile failure of claystone through thermal pressurization in a novel triaxial device" Rock Mechanics and Rock Engineering 55(7): 3881–3899.
- [8] F. Bernier and B. Neerdael, (1996) “Overview of in-situ thermomechanical experiments in clay: Concept, results and interpretation" Engineering geology 41(1-4): 51–64.
- [9] D. De Bruyn and S. Labat, (2002) “The second phase of ATLAS: the continuation of a running THM test in the HADES underground research facility at Mol" Engineering Geology 64(2-3): 309–316.
- [10] A. Dizier, G. Chen, J. Verstricht, X. Li, X. Sillen, and S. Levasseur, (2021) “The large-scale in situ PRACLAY heater test: First observations on the in situ thermo-hydromechanical behaviour of Boom Clay" International Journal of Rock Mechanics and Mining Sciences 137:104558.
- [11] H. Kull, N. Jockwer, C.-L. Zhang, Y. Wileveau, and S. Pepa, (2007) “Measurement of thermally-induced porewater pressure increase and gas migration in the Opalinus Clay at Mont Terri" Physics and Chemistry of the Earth, Parts A/B/C 32(8-14): 937–946.
- [12] M. Jobmann and M. Polster, (2007) “The response of Opalinus clay due to heating: A combined analysis of in situ measurements, laboratory investigations and numerical calculations" Physics and Chemistry of the Earth, Parts A/B/C 32(8-14): 929–936.
- [13] G. Armand, F. Bumbieler, N. Conil, R. de La Vaissière, J. Bosgiraud, and M. Vu, (2017) “Main outcomes from in situ THM experiments programme to demonstrate feasibility of radioactive HL-ILW disposal in the Callovo- Oxfordian claystone" J Rock Mech Geotech Eng 9(3): 415–427.
- [14] F. Bumbieler, C. Plúa, S. Tourchi, M.-N. Vu, J. Vaunat, A. Gens, and G. Armand, (2021) “Feasibility of constructing a full-scale radioactive high-level waste disposal cell and characterization of its thermo-hydro-mechanical behavior" International Journal of Rock Mechanics and Mining Sciences 137: 104555.
- [15] S. Tourchi, J. Vaunat, A. Gens, F. Bumbieler, M.-N. Vu, and G. Armand, (2021) “A full-scale in situ heating test in Callovo-Oxfordian claystone: observations, analysis and interpretation" Computers and Geotechnics 133: 104045.
- [16] N. Conil, M. Vitel, C. Plua, M. N. Vu, D. Seyedi, and G. Armand, (2020) “In situ investigation of the THM behavior of the Callovo-Oxfordian claystone" Rock Mechanics and Rock Engineering 53: 2747–2769.
- [17] C. Plúa, M.-N. Vu, D. M. Seyedi, and G. Armand, (2021) “Effects of inherent spatial variability of rock properties on the thermo-hydro-mechanical responses of a highlevel radioactive waste repository" International Journal of Rock Mechanics and Mining Sciences 145: 104682.
- [18] C. Plúa, M.-N. Vu, G. Armand, J. Rutqvist, J. T. Birkholzer, H. Xu, R. Guo, K. E. Thatcher, A. E. Bond, W. Wang, T. Nagel, H. Shao, and O. Kolditz, (2021) “A reliable numerical analysis for large-scale modelling of a high-level radioactive waste repository in the Callovo- Oxfordian claystone" International Journal of Rock Mechanics and Mining Sciences 140: 104574.
- [19] D. Seyedi, G. Armand, N. Conil, M. Vitel, and M.-N. Vu. “On the thermo-hydro-mechanical pressurization in Callovo-Oxfordian claystone under thermal loading”. In: Poromechanics VI. 2017, 754–761.
- [20] M. Vu, D. Seyedi, and G. Armand. “Thermo-poromechanical coupled processes during thermal pressurization around nuclear waste repository”. In: COUPLED VI: proceedings of the VI International Conference on Computational Methods for Coupled Problems in Science and Engineering. CIMNE. 2015, 1251–1260.
- [21] S. Ghabezloo, (2011) “Micromechanics analysis of thermal expansion and thermal pressurization of a hardened cement paste" Cement and Concrete Research 41(5): 520–532.
- [22] S. Ghabezloo and J. Sulem, (2009) “Stress dependent thermal pressurization of a fluid-saturated rock" Rock Mechanics and Rock Engineering 42: 1–24.
- [23] A. W. Rempel and J. R. Rice, (2006) “Thermal pressurization and onset of melting in fault zones" Journal of Geophysical Research: Solid Earth 111(B9):
- [24] J. Sulem, P. Lazar, and I. Vardoulakis, (2007) “Thermoporo-mechanical properties of clayey gouge and application to rapid fault shearing" International journal for numerical and analytical methods in geomechanics 31(3): 523-540.
- [25] L. Zhou, Z. Zhu, X. Xie, and Y. Hu, (2022) “Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance" Renewable Energy 181: 1440–1458.
- [26] J. R. Booker and C. Savvidou, (1985) “Consolidation around a point heat source" International Journal for Numerical and Analytical Methods in Geomechanics 9(2): 173–184.
- [27] L. Hai-an, Z. Long-peng, L. Jiong-feng, and C. Xinjun. “Study on Thermo-Mechanical Coupling Characteristics of Surrounding Rock of HLW Disposal Repository in Clay Rock”. In: IOP Conference Series: Earth and Environmental Science. 570. 5. IOP Publishing.2020, 052047.
- [28] O. Coussy. Poromechanics. John Wiley & Sons, 2004.
- [29] I. Guide, (1998) “Comsol Multiphysics" 5.6, COMSOL AB: 204–8.
- [30] J. Rutqvist, (2017) “An overview of TOUGH-based geomechanics models" Computers & Geosciences 108: 56–63.
- [31] O. Kolditz, S. Bauer, L. Bilke, N. Böttcher, J.-O. Delfs, T. Fischer, U. J. Görke, T. Kalbacher, G. Kosakowski, C. McDermott, et al., (2012) “OpenGeoSys: an opensource initiative for numerical simulation of thermo-hydromechanical/chemical (THM/C) processes in porous media" Environmental Earth Sciences 67: 589–599.
- [32] A. A. Chaudhry, J. Buchwald, O. Kolditz, and T. Nagel, (2019) “Consolidation around a point heat source (correction and verification)" International Journal for Numerical and Analytical Methods in Geomechanics 43(18): 2743–2751.
- [33] C. D. C.-C. Levels. Engineeringtoolbox. com. 2019.
- [34] R. T. Fernandez. “Natural convection from cylinders buried in porous media". (PhD Thesis). University of California, Berkeley, 1972.
- [35] E. O. Holzbecher. Modeling density-driven flow in porous media: principles, numerics, software. Springer Science & Business Media, 1998.
- [36] E. d. C. Andrade, (1930) “The viscosity of liquids" Nature 125(3148): 309–310.
- [37] N. H. Tran. “Hydro-mechanical behavior of deep tunnels in anisotropic poroelastic medium". (PhD Thesis). Université d’Orléans, 2016.
- [38] M. A. Mánica, A. Gens, J. Vaunat, G. Armand, and M.-N. Vu, (2022) “Numerical simulation of underground excavations in an indurated clay using non-local regularisation. Part 1: formulation and base case" Géotechnique 72(12): 1092–1112.
- [39] Z. Yu, J. Shao, G. Duveau, M.-N. Vu, and G. Armand, (2021) “Numerical modeling of deformation and damage around underground excavation by phase-field method with hydromechanical coupling" Computers and Geotechnics 138: 104369.