Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Md. Mahabub Alam Moon1, Sayed Rezwanul Islam Biplab1, Md. Hasan Ali1, Md. Ferdous Rahman1, Md. Sohel Rana1, and Abdul Kuddus2,3This email address is being protected from spambots. You need JavaScript enabled to view it. 

1Department of Electrical and Electronic Engineering, Begum Rokeya University, Rangpur, Rangpur 5400, Bangladesh
2Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
3Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University, Shiga 525-8577, Japan


 

Received: November 18, 2022
Accepted: December 12, 2022
Publication Date: May 2, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202312_26(12).0012  


The photovoltaic performance of copper indium gallium diselenide (CIGS)-based solar cells with Cd-free single buffer layers and a barium disulfide (BaSi2) back-surface field (BSF) has been studied through a numerical approach using a one-dimensional solar cell capacitance simulator (SCAPS-1D). The efficacy of the buffer layer of cadmium sulfide (CdS) via FTO/CdS/CIGS/BaSi2/Mo heterostructure has been studied first and thereafter toxic CdS is replaced by various non-toxic buffers; zinc selenide (ZnSe), indium-doped zinc sulfide (ZnS:In), and indium sulfide (In2S3). Comprehensive research has been done on the effects of buffer layer thickness, gallium (Ga) concentration in CIGS absorber, BaSi2 BSF doping density, various back contact metals, and cell operating temperature. The highest power conversion efficiency (PCE) of the CIGS-based solar cell with the CdS buffer layer is 26.24 percent, while solar cells with Zn-based buffers made of ZnS:In or ZnSe boost PCE by 17.68 percent and 17.56 percent, respectively. This study demonstrates the enormous potential of Zn-based ZnS:In and ZnSe buffers for the experimental fabrication of high-efficiency thin-film solar cells with the following structure: FTO/buffer/CIGS/BaSi2/Mo. 


Keywords: Zn-based buffer; BaSi2 BSF; CIGS; SCAPS-1D; Thin film solar cell.


  1. [1] D. I. Paul, (2019) “Experimental characterisation of photovoltaic modules with cells connected in different configurations to address nonuniform illumination effect" Journal of Renewable Energy 2019: DOI: 10.1155/2019/5168259.
  2. [2] T. AlZoubi and M. Moustafa, (2019) “Numerical optimization of absorber and CdS buffer layers in CIGS solar cells using SCAPS" Int. J. Smart Grid Clean Energy 8: 291–298. DOI: 10.12720/sgce.8.3.291-298.
  3. [3] H. Movla, (2014) “Optimization of the CIGS based thin film solar cells: Numerical simulation and analysis" Optik 125(1): 67–70. DOI: 10.1016/j.ijleo.2013.06.034.
  4. [4] N. Guirdjebaye, S. Ouedraogo, A. T. Ngoupo, G. M. Tcheum, and J. M. B. Ndjaka, (2019) “Junction configurations and their impacts on Cu (In, Ga) Se2 based solar cells performances" Opto-Electronics Review 27(1):70–78. DOI: 10.1016/j.opelre.2019.02.001.
  5. [5] Y. Ando, S. Ishizuka, S.Wang, J. Chen, M. M. Islam, H. Shibata, K. Akimoto, and T. Sakurai, (2018) “Relationship between bandgap grading and carrier recombination for Cu (In, Ga) Se2-based solar cells" Japanese Journal of Applied Physics 57(8S3): 08RC08. DOI: 10.7567/JJAP.57.08RC08.
  6. [6] A. Chihi, M. Boujmil, and B. Bessais, (2017) “Investigation on the performance of CIGS/TiO2 heterojunction using SCAPS software for highly efficient solar cells" Journal of Electronic Materials 46(8): 5270–5277. DOI: 10.1007/s11664-017-5547-0.
  7. [7] A. Bouich, B. Hartiti, S. Ullah, H. Ullah, M. E. Touhami, D. Santos, and B. Mari, (2019) “Experimental, theoretical, and numerical simulation of the performance of CuInxGa (1-x) S2-based solar cells" Optik 183: 137–147. DOI: 10.1016/j.ijleo.2019.02.067.
  8. [8] S. Alhammadi, H. Park, and W. K. Kim, (2019) “Optimization of intrinsic ZnO thickness in Cu (In, Ga) Se2- based thin film solar cells" Materials 12(9): 1365. DOI:10.3390/ma12091365.
  9. [9] M. Moon, M. Alam, M. Rahman, J. Hossain, A. B. M. Ismail, et al. “Comparative study of the second generation a-Si: H, CdTe, and CIGS thin-film solar cells”. In: Advanced Materials Research. 1154. Trans Tech Publ.2019, 102-111. DOI: 10.4028/www. scientific .net/AMR.1154.102.
  10. [10] M. N. Harif, S. F. Abdullah, A. W. M. Zuhdi, F. Za’Abar, M. S. Bahrudin, and A. H. Hasani. “Simulation analysis on CIGS solar cell on different absorber layer thickness subject to temperature change using SCAPS 1-D software”. In: 2018 IEEE International Conference on Semiconductor Electronics (ICSE). IEEE. 2018, 201–204. DOI: 10.1109/SMELEC.2018.8481333.
  11. [11] S. R. I. Biplab, M. Ali, M. Moon, M. Alam, M. Pervez, M. Rahman, J. Hossain, et al., (2020) “Performance enhancement of CIGS-based solar cells by incorporating an ultrathin BaSi2 BSF layer" Journal of Computational Electronics 19(1): 342–352. DOI: 10.1007/s10825-019-01433-0.
  12. [12] M. H. Ali, M. M. A. Moon, and M. F. Rahman, (2019) “Study of ultra-thin CdTe/CdS heterostructure solar cell purveying open-circuit voltage 1.2 V" Materials Research Express 6(9): 095515. DOI: 10.1088/2053-1591/ab3089.
  13. [13] H. Heriche, Z. Rouabah, and N. Bouarissa, (2017) “New ultra thin CIGS structure solar cells using SCAPS simulation program" International Journal of Hydrogen Energy 42(15): 9524–9532. DOI: 10.1016/j.ijhydene.2017.02.099.
  14. [14] F. Rahman, J. Podder, and M. Ichimura, (2011) “Studies on structural and optical characterization of In-Zn-Sternary thin films prepared by spray pyrolysis" International journal of optics and photonics 5(2): 79–86.
  15. [15] K. Luo, Y. Sun, L. Zhou, F. Wang, and F. Wu, (2017) “Theoretical simulation of performances in CIGS thin-film  solar cells with cadmium-free buffer layer" Journal of Semiconductors 38(8): 084006. DOI: 10.1088/1674-4926/38/8/084006.
  16. [16] M. Burgelman, K. Decock, A. Niemegeers, J. Verschraegen, and S. Degrave, (2016) “SCAPS manual" February:
  17. [17] M. M. A. Moon, M. H. Ali, M. F. Rahman, J. Hossain, and A. B. M. Ismail, (2020) “Design and simulation of FeSi2-based novel heterojunction solar cells for harnessing visible and near-infrared light" physica status solidi (a) 217(6): 1900921. DOI: 10.1002/pssa.201900921.
  18. [18] A. Shimizu, S. Chaisitsak, T. Sugiyama, A. Yamada, and M. Konagai, (2000) “Zinc-based buffer layer in the Cu (InGa) Se2 thin film solar cells" Thin Solid Films 361: 193–197. DOI: 10.1016/S0040-6090(99)00792-0.
  19. [19] F. Haque, K. Rahman, M. Islam, M. Rashid, M. Akhtaruzzaman, M. Alam, Z. Alothman, K. Sopian, and N. Amin, (2014) “Growth optimization of ZnS thin films by RF magnetron sputtering as prospective buffer layer in thin film solar cells" Chalcogenide Lett 11(4):189–197.
  20. [20] M. Rafee Mahbub, S. Islam, F. Anwar, S. S. Satter, and S. M. Ullah, (2016) “Simulation of CZTS thin film solar cell for different buffer layers for high efficiency performance" South Asian Journal of Engineering and Technology 2(52): 1–10.
  21. [21] S. Kumari and A. S. Verma, (2014) “Buffer layer selection for CuIn1- x Ga x Se2 based thin film solar cells" Materials Research Express 1(1): 016202. DOI: 10.1088/2053-1591/1/1/016202.
  22. [22] M. Asaduzzaman, M. Hosen, M. Ali, A. N. Bahar, et al., (2017) “Non-toxic buffer layers in flexible Cu (In, Ga) Se2 photovoltaic cell applications with optimized absorber thickness" International Journal of Photoenergy 2017: DOI: 10.1155/2017/4561208.
  23. [23] T. Nakada and M. Mizutani, (2002) “18% efficiency Cd-free Cu (In, Ga) Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers" Japanese Journal of Applied Physics 41(2B): L165. DOI: 10.1143/JJAP.41.L165.
  24. [24] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, et al., (2003) “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells" Progress in Photovoltaics: research and applications 11(4): 225–230. DOI: 10.1002/pip.494.
  25. [25] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, (2008) “19· 9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81· 2% fill factor" Progress in Photovoltaics: Research and applications 16(3): 235–239. DOI: doi.org/10.1002/pip.822.
  26. [26] P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, (2016) “Effects of heavy alkali elements in Cu (In, Ga) Se2 solar cells with efficiencies up to 22.6%" physica status solidi (RRL)–Rapid Research Letters 10(8): 583–586. DOI: 10.1002/pssr.201600199.
  27. [27] M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and X. Hao, (2021) “Solar cell efficiency tables (version 55)" Progress in photovoltaics: research and applications 29(1): 3–15. DOI: 10.1002/pip.3228.
  28. [28] M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A.W. Ho-Baillie, (2018) “Solar cell efficiency tables (version 52)" Progress in Photovoltaics: Research and Applications 26(7): 427–436.DOI: 10.1002/pip.3102.
  29. [29] D. Hariskos, S. Spiering, and M. Powalla, (2005) “Buffer layers in Cu (In, Ga) Se2 solar cells and modules" Thin Solid Films 480: 99–109. DOI: 10.1016/j.tsf.2004.11.118.
  30. [30] S. Spiering, A. Nowitzki, F. Kessler, M. Igalson, and H. A. Maksoud, (2016) “Optimization of buffer-window layer system for CIGS thin film devices with indium sulphide buffer by in-line evaporation" Solar Energy Materials and Solar Cells 144: 544–550. DOI: 10.1016/j.solmat.2015.09.038.
  31. [31] A. Ennaoui, S. Siebentritt, M. C. Lux-Steiner,W. Riedl, and F. Karg, (2001) “High-efficiency Cd-free CIGSS thinfilm solar cells with solution grown zinc compound buffer layers" Solar Energy Materials and Solar Cells 67(1-4): 31–40. DOI: 10.1016/S0927-0248(00)00260-9.
  32. [32] M. Nakamura, Y. Kouji, Y. Chiba, H. Hakuma, T. Kobayashi, and T. Nakada. “Achievement of 19.7% efficiency with a small-sized Cu (InGa)(SeS) 2 solar cells prepared by sulfurization after selenizaion process with Zn-based buffer”. In: 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE. 2013, 0849–0852. DOI: 10.1109/PVSC.2013.6744278.
  33. [33] T. M. Friedlmeier, P. Jackson, A. Bauer, D. Hariskos, O. Kiowski, R. Wuerz, and M. Powalla, (2015) “Improved photocurrent in Cu (In, Ga) Se 2 solar cells: from 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cdfree"
    IEEE Journal of Photovoltaics 5(5): 1487–1491. DOI: 10.1109/JPHOTOV.2015.2458039.
  34. [34] A. Sylla, S. Toure, J.-P. Vilcot, et al., (2017) “Numerical modeling and simulation of CIGS-based solar cells with ZnS buffer layer" Open Journal of Modelling and Simulation 5(04): 218. DOI: 10.4236/ojmsi.2017.54016.
  35. [35] T. N. Fridolin, D. K. G. Maurel, G. W. Ejuh, T. Benedicte, and N. J. Marie, (2019) “Highlighting some layers properties in performances optimization of CIGSe based solar cells: case of Cu (In, Ga) Se–ZnS" Journal of King Saud University-Science 31(4): 1404–1413. DOI: 10.1016/j.jksus.2018.03.026.
  36. [36] S. Tobbeche, S. Kalache, M. Elbar, M. N. Kateb, and M. R. Serdouk, (2019) “Improvement of the CIGS solar cell performance: structure based on a ZnS buffer layer" Optical and Quantum Electronics 51(8): 1–13. DOI:
    10.1007/s11082-019-2000-z.
  37. [37] M. S. R. Robin and M. M. Rahaman. “A comparative performance analysis of CdS and In 2 S 3 buffer layer in CIGS solar cell”. In: 2016 2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE). IEEE. 2016, 1–4. DOI: 10.1109/ICECTE.2016.7879639.
  38. [38] F. Engelhardt, L. Bornemann, M. Kontges, T. Meyer, J. Parisi, E. Pschorr-Schoberer, B. Hahn,W. Gebhardt,W. Riedl, and U. Rau, (1999) “Cu (In, Ga) Se2 solar cells with a ZnSe buffer layer: interface characterization by quantum efficiency measurements" Progress in Photovoltaics: Research and Applications 7(6): 423–436. DOI: 10.1002/(SICI)1099-159X(199911/12)7:6<423::AID-PIP281>3.0.CO;2-S.
  39. [39] P. Vanysek. CRC Handbook of Chemistry and Physics. Internet Version 2005, Lide, DR, Ed. 2005.
  40. [40] F. T. Zohora and M. A. M. Bhuiyan, “Optimization Of High Performance Cigs Solar Cells With Different Buffer Layers":
  41. [41] H. Ramli, S. K. A. Rahim, T. Rahim, and M. M. Aminuddin, (2013) “Optimization of zinc sulfide (ZnS) electron affinity in copper indium sulfide (CIS) based photovoltaic cell" Chalcogenide Lett 10(6): 189–195.
  42. [42] M. B. Hosen, A. N. Bahar, M. K. Ali, and M. Asaduzzaman, (2017) “Modeling and performance analysis dataset of a CIGS solar cell with ZnS buffer layer" Data in brief 14: 246–250. DOI: 10.1016/j.dib.2017.07.054.
  43. [43] P. Singh, R. Gautam, S. Sharma, S. Kumari, and A. Verma, (2016) “Simulated solar cell device of CuGaSe2 by using CdS, ZnS and ZnSe buffer layers" Materials Science in Semiconductor Processing 42: 288–302. DOI: 10.1016/j.mssp.2015.10.030.
  44. [44] L.-X. Shao, K.-H. Chang, and H.-L. Hwang, (2003) “Zinc sulfide thin films deposited by RF reactive sputtering for photovoltaic applications" Applied Surface Science 212: 305–310. DOI: 10.1016/S0169-4332(03)00085-0.
  45. [45] M. M. Islam, S. Ishizuka, A. Yamada, K. Sakurai, S. Niki, T. Sakurai, and K. Akimoto, (2009) “CIGS solar cell with MBE-grown ZnS buffer layer" Solar energy materials and solar cells 93(6-7): 970–972. DOI: 10.1016/j.solmat.2008.11.047.
  46. [46] N. Okereke and A. Ekpunobi, (2011) “ZnSe buffer layer deposition for solar cell application" Journal of Non-oxide glasses 3(1): 31.
  47. [47] M. M. A. Moon, M. H. Ali, M. F. Rahman, A. Kuddus, J. Hossain, and A. B. M. Ismail, (2020) “Investigation of thin-film p-BaSi2/n-CdS heterostructure towards semiconducting silicide based high efficiency solar cell" Physica Scripta 95(3): 035506. DOI: 10.1088/1402-4896/ab49e8.
  48. [48] N. Khoshsirat, N. A. M. Yunus, M. N. Hamidon, S. Shafie, and N. Amin, (2015) “Analysis of absorber layer properties effect on CIGS solar cell performance using SCAPS" Optik 126(7-8): 681–686. DOI: 10.1016/j.ijleo.2015.02.037.
  49. [49] H. I. Abdalmageed, M. Fedawy, and M. H. Aly. “Effect of absorber layer bandgap of CIGS-based solar cell with (CdS/ZnS) buffer layer”. In: Journal of Physics: Conference Series. 2128. 1. IOP Publishing. 2021, 012009. DOI: 10.1088/1742-6596/2128/1/012009.
  50. [50] C. Frisk, C. Platzer-Bjorkman, J. Olsson, P. Szaniawski, J. Watjen, V. Fjallstrom, P. Salome, and M. Edoff, (2014) “Optimizing Ga-profiles for highly efficient Cu (In, Ga) Se2 thin film solar cells in simple and complex defect models" Journal of Physics D: Applied Physics 47(48): 485104. DOI: 10.1088/0022- 3727/47/48/485104.
  51. [51] S. Benabbas, Z. Rouabah, H. Heriche, and N.-E. Chelali, (2016) “A numerical study of high efficiency ultra-thin CdS/CIGS solar cells" African Journal of Science, Technology, Innovation and Development 8(4): 340–342. DOI: 10.1080/20421338.2015.1118929.
  52. [52] Y. H. Khattak, F. Baig, B. Mari, S. Beg, S. R. Gillani, and T. Ahmed, (2018) “Effect of CdTe back surface field on the efficiency enhancement of a CGS based thin film solar cell" Journal of Electronic Materials 47(9): 5183–
    5190. DOI: 10.1007/s11664-018-6405-4.
  53. [53] M. M. A. Moon, M. F. Rahman, M. Kamruzzaman, J. Hossain, and A. B. M. Ismail, (2021) “Unveiling the prospect of a novel chemical route for synthesizing solution-processed CdS/CdTe thin-film solar cells" Energy Reports 7: 1742–1756. DOI: 10.1016/j.egyr.2021.03.031.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.