REFERENCES
- [1] R. Cimpoiasu, (2020) “Multiple invariant solutions of the 3 D potential Yu–Toda–Sasa–Fukuyama equation via symmetry technique" International Journal of Modern Physics B 34(20): 2050188. DOI: 10.1142/S021797922050188X.
- [2] R. Cimpoiasu, (2018) “Travelling Wave Solutions For The Long-Short Wave Resonance Model Through An Improved" Romanian Journal of Physics 63: 111.
- [3] R. Cimpoiasu and A. S. Pauna, (2018) “Complementary wave solutions for the long-short wave resonance model via the extended trial equation method and the generalized Kudryashov method" Open Physics 16(1): 419–426. DOI: 10.1515/phys-2018-0057.
- [4] A. Houwe, S. Abbagari, Y. Salathiel, M. Inc, S. Y. Doka, K. T. Crepin, and D. Baleanu, (2020) “Complex traveling-wave and solitons solutions to the Klein-Gordon-Zakharov equations" Results in Physics 17: 103127. DOI: 10.1016/j.rinp.2020.103127.
- [5] A. Houwe, M. ˙Inç, S. Doka, M. Akinlar, and D. Baleanu, (2020) “Chirped solitons in negative index materials generated by Kerr nonlinearity" Results in Physics 17: 103097. DOI: 10.1016/j.rinp.2020.103097.
- [6] H. Aminikhah, A. R. Sheikhani, and H. Rezazadeh, (2015) “Exact solutions for the fractional differential equations by using the first integral method" Nonlinear engineering 4(1): 15–22. DOI: 10.1515/nleng-2014-0018.
- [7] H. Aminikhah, A. H. R. Sheikhani, and H. Rezazadeh, (2016) “Travelling wave solutions of nonlinear systems of PDEs by using the functional variable method" Boletim da sociedade paranaense de matemática 34(2): 213–229. DOI: 10.5269/bspm.v34i2.25501.
- [8] B. Ghanbari, K. S. Nisar, and M. Aldhaifallah, (2020) “Abundant solitary wave solutions to an extended nonlinear Schrodinger’s equation with conformable derivative using an efficient integration method" Advances in Difference Equations 2020(1): 1–25. DOI: 10.1186/s13662-020-02787-7.
- [9] K. Hosseini, M. Matinfar, and M. Mirzazadeh, (2021) “Soliton solutions of high-order nonlinear Schrodinger equations with different laws of nonlinearities" Regular and Chaotic Dynamics 26(1): 105–112. DOI: 10.1134/S1560354721010068.
- [10] H. M. Baskonus, H. Bulut, and T. A. Sulaiman, (2019) “New complex hyperbolic structures to the lonngren-wave equation by using sine-gordon expansion method" Applied Mathematics and Nonlinear Sciences 4(1): 129–138.
- [11] A. Kurt, M. ¸Senol, O. Tasbozan, and M. Chand, (2019) “Two reliable methods for the solution of fractional coupled Burgers’ equation arising as a model of Polydispersive sedimentation" Applied Mathematics and Nonlinear Sciences 4(2): 523–534.
- [12] E. M. Zayed and A.-G. Al-Nowehy, (2020) “New generalized ϕ6-model expansion method and its applications to the (3+ 1) dimensional resonant nonlinear Schrödinger equation with parabolic law nonlinearity" Optik 214: 164702.
- [13] E. M. Zayed, T. A. Nofal, A. Al-Nowehy, and M. E. Alngar, (2021) “Optical solitons and other solutions to the (2+ 1)-dimensional coupled system of NLSE by two integration approaches" Optik 232: 166510.
- [14] M. Ramzan, Y.-M. Chu, H. ur Rehman, M. S. Saleem, and C. Park, (2021) “Soliton Solutions for Anti-Cubic Nonlinearity Using Three Analytical Approaches" Journal of Applied Analysis & Computation 11(4): 2177–2192. DOI: 10.11948/20200380.
- [15] M. Eslami and H. Rezazadeh, (2016) “The first integral method for Wu–Zhang system with conformable timefractional derivative" Calcolo 53(3): 475–485. DOI: 10.1007/s10092-015-0158-8.
- [16] V. Kumar and A. Patel, (2020) “Construction of the soliton solutions and modulation instability analysis for the Mel’nikov system" Chaos, Solitons & Fractals 140: 110159. DOI: 10.1016/j.chaos.2020.110159.
- [17] V. Kumar and A. Patel, (2019) “Soliton solutions and modulation instability analysis of the coupled Zakharov-Kuznetsov equation" The European Physical Journal Plus 134(4): 170. DOI: 10.1140/epjp/i2019-12521-6.
- [18] V. Kumar and A. Patel, (2021) “Dispersion and phase managed optical soliton solutions of a nonautonomous (3+1)-dimensional coupled nonlinear Schrodinger equation" Optik 242: 166648. DOI: 10.1016/j.ijleo.2021.166648.
- [19] S. Kumar, M. Niwas, and N. Mann, (2021) “Abundant analytical closed-form solutions and various solitonic wave forms to the ZK-BBM and GZK-BBM equations in fluids and plasma physics" Partial Differential Equations in Applied Mathematics 4: 100200. DOI: 10.1016/j.padiff.2021.100200.
- [20] S. Kumar, L. Kaur, and M. Niwas, (2021) “Some exact invariant solutions and dynamical structures of multiple solitons for the (2+ 1)-dimensional Bogoyavlensky-Konopelchenko equation with variable coefficients using Lie symmetry analysis" Chinese Journal of Physics 71: 518–538. DOI: 10.1016/j.cjph.2021.03.021.
- [21] S. Kumar, M. Niwas, and S. K. Dhiman, (2021) “Abundant analytical soliton solutions and different wave profiles to the Kudryashov-Sinelshchikov equation in mathematical physics" Journal of Ocean Engineering and Science: DOI: 10.1016/j.joes.2021.10.009.
- [22] S. Kumar, M. Niwas, M. Osman, and M. Abdou, (2021) “Abundant different types of exact soliton solution to the (4+ 1)-dimensional Fokas and (2+ 1)-dimensional breaking soliton equations" Communications in Theoretical Physics 73(10): 105007. DOI: 10.1088/1572-9494/ac11ee.
- [23] S. Kumar, M. Niwas, and A.-M. Wazwaz, (2020) “Lie symmetry analysis, exact analytical solutions and dynamics of solitons for (2+ 1)-dimensional NNV equations" Physica Scripta 95(9): 095204. DOI: 10.1088/1402-4896/aba5ae.
- [24] S. El-Ganaini, S. Kumar, and M. Niwas, (2022) “Construction of multiple new analytical soliton solutions and various dynamical behaviors to the nonlinear convectiondiffusion-reaction equation with power-law nonlinearity and density-dependent diffusion via Lie symmetry approach together with a couple of integration approaches" Journal of Ocean Engineering and Science: DOI: 10.1016/j.joes.2022.01.006.
- [25] B. Gao and Y. Wang, (2021) “Traveling wave solutions for the (2+ 1)-dimensional generalized Zakharov–Kuznetsov equation with variable coefficients" Optical and Quantum Electronics 53(1): 1–15.
- [26] S. Kumar, M. Niwas, and I. Hamid, (2021) “Lie symmetry analysis for obtaining exact soliton solutions of generalized Camassa–Holm–Kadomtsev–Petviashvili equation" International Journal of Modern Physics B 35(02): 2150028. DOI: 10.1142/S0217979221500284.
- [27] M. S. Osman and A.-M. Wazwaz, (2018) “An efficient algorithm to construct multi-soliton rational solutions of the (2+ 1)-dimensional KdV equation with variable coefficients" Applied mathematics and Computation 321: 282–289. DOI: 10.1016/j.amc.2017.10.042.
- [28] B. Ghanbari, M. Osman, and D. Baleanu, (2019) “Generalized exponential rational function method for extended Zakharov–Kuzetsov equation with conformable derivative" Modern Physics Letters A 34(20): 1950155. DOI: 10.1142/S0217732319501554.
- [29] M. Osman and B. Ghanbari, (2018) “New optical solitary wave solutions of Fokas-Lenells equation in presence of perturbation terms by a novel approach" Optik 175: 328–333. DOI: 10.1016/j.ijleo.2018.08.007.
- [30] K. K. Ali, M. S. Osman, H. M. Baskonus, N. S. Elazabb, and E. ˙Ilhan, (2020) “Analytical and numerical study of the HIV-1 infection of CD4+ T-cells conformable fractional mathematical model that causes acquired immunodeficiency syndrome with the effect of antiviral drug therapy" Mathematical Methods in the Applied Sciences: DOI: 10.1002/mma.7022.
- [31] K. K. Ali, A.-M. Wazwaz, and M. Osman, (2020) “Optical soliton solutions to the generalized nonautonomous nonlinear Schrödinger equations in optical fibers via the sine-Gordon expansion method" Optik 208: 164132. DOI:10.1016/j.ijleo.2019.164132.
- [32] J.-G. Liu,W.-H. Zhu, M. Osman, andW.-X. Ma, (2020) “An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo–Miwa model" The European Physical Journal Plus 135(5): 1–9. DOI: 10.1140/epjp/s13360-020-00405-9.
- [33] B. Inan, M. S. Osman, T. Ak, and D. Baleanu, (2020) “Analytical and numerical solutions of mathematical biology models: The Newell-Whitehead-Segel and Allen-Cahn equations" Mathematical methods in the applied sciences 43(5): 2588–2600. DOI: 10.1002/mma.6067.
- [34] K. S. Nisar, A. Ciancio, K. K. Ali, M. Osman, C. Cattani, D. Baleanu, A. Zafar, M. Raheel, and M. Azeem, (2022) “On beta-time fractional biological population model with abundant solitary wave structures" Alexandria Engineering Journal 61(3): 1996–2008. DOI: 10.1016/j.aej.2021.06.106.
- [35] M. A. Akbar, M. A. Kayum, and M. Osman, (2021) “Bright, periodic, compacton and bell-shape soliton solutions of the extended QZK and (3+ 1)-dimensional ZK equations" Communications in Theoretical Physics 73(10): 105003. DOI: 10.1088/1572-9494/ac1a6c.
- [36] N. H. Aljahdaly, R. G. ALoufi, and A. R. Seadawy, (2021) “Stability analysis and soliton solutions for the longitudinal wave equation in magneto electro-elastic circular rod" Results in Physics 26: 104329. DOI: 10.1016/j.rinp.2021.104329.
- [37] H. K. Barman, M. A. Akbar, M. Osman, K. S. Nisar, M. Zakarya, A.-H. Abdel-Aty, and H. Eleuch, (2021) “Solutions to the Konopelchenko-Dubrovsky equation and the Landau-Ginzburg-Higgs equation via the generalized Kudryashov technique" Results in Physics 24: 104092. DOI: 10.1016/j.rinp.2021.104092.
- [38] J.-G. Liu, M. S. Osman, W.-H. Zhu, L. Zhou, and D. Baleanu, (2020) “The general bilinear techniques for studying the propagation of mixed-type periodic and lumptype solutions in a homogenous-dispersive medium" AIP Advances 10(10): 105325. DOI: 10.1063/5.0019219.
- [39] H. Almusawa, K. K. Ali, A.-M.Wazwaz, M. Mehanna, D. Baleanu, and M. Osman, (2021) “Protracted study on a real physical phenomenon generated by media inhomogeneities" Results in Physics 31: 104933. DOI: 10.1016/j.rinp.2021.104933.
- [40] L. Akinyemi, (2021) “Two improved techniques for the perturbed nonlinear Biswas–Milovic equation and its optical solitons" Optik 243: 167477. DOI: 10.1016/j.ijleo.2021.167477.
- [41] M. Senol, L. Akinyemi, A. Ata, and O. S. Iyiola, (2021) “Approximate and generalized solutions of conformable type Coudrey–Dodd–Gibbon–Sawada–Kotera equation" International Journal of Modern Physics B 35(02): 2150021. DOI: 10.1142/S0217979221500211.
- [42] L. Akinyemi, M. ¸Senol, M. Mirzazadeh, and M. Eslami, (2021) “Optical solitons for weakly nonlocal Schrödinger equation with parabolic law nonlinearity and external potential" Optik 230: 166281. DOI: 10.1016/j.ijleo.2021.166281.
- [43] M. Hashemi, (2017) “A novel simple algorithm for solving the magneto-hemodynamic flow in a semi-porous channel" European Journal of Mechanics-B/Fluids 65: 359–367. DOI: 10.1016/j.euromechflu.2017.05.008.
- [44] R. Najafi, F. Bahrami, and M. Hashemi, (2017) “Classical and nonclassical Lie symmetry analysis to a class of nonlinear time-fractional differential equations" Nonlinear Dynamics 87(3): 1785–1796. DOI: 10.1007/s11071-016-3152-z.
- [45] M. T. Darvishi, M. Najafi, and A.-M. Wazwaz, (2021) “Some optical soliton solutions of space-time conformable fractional Schrödinger-type models" Physica Scripta 96(6): 065213. DOI: 10.1088/1402-4896/abf269.
- [46] M. Khater and B. Ghanbari, (2021) “On the solitary wave solutions and physical characterization of gas diffusion in a homogeneous medium via some efficient techniques" The European Physical Journal Plus 136(4): 1–28. DOI: 10.1140/epjp/s13360-021-01457-1.
- [47] R. M. El-Shiekh and M. Gaballah, (2020) “Bright and dark optical solitons for the generalized variable coefficients nonlinear Schrödinger equation" International Journal of Nonlinear Sciences and Numerical Simulation 21(7-8): 675–681. DOI: 10.1515/ijnsns-2019-0054.
- [48] C. Chen, Y. Jiang, Z.Wang, and J.Wu, (2020) “Dynamical behavior and exact solutions for time-fractional nonlinear Schrödinger equation with parabolic law nonlinearity" Optik 222: 165331. DOI: 10.1016/j.ijleo.2020.165331.
- [49] M. S. Shehata, H. Rezazadeh, E. H. Zahran, E. Tala- Tebue, and A. Bekir, (2019) “New optical soliton solutions of the perturbed Fokas-Lenells equation" Communications in Theoretical Physics 71(11): 1275. DOI: 10.1088/0253-6102/71/11/1275.
- [50] H. Rezazadeh, D. Kumar, T. A. Sulaiman, and H. Bulut, (2019) “New complex hyperbolic and trigonometric solutions for the generalized conformable fractional Gardner equation" Modern Physics Letters B 33(17):1950196. DOI: 10.1142/S0217984919501963.
- [51] H. Rezazadeh, (2018) “New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity" Optik 167: 218–227. DOI: 10.1016/j.ijleo.2018.04.026.
- [52] A.-M.Wazwaz, (2005) “Compact and noncompact physical structures for the ZK–BBM equation" Applied Mathematics and Computation 169(1): 713–725. DOI: 10.1016/j.amc.2004.09.062.
- [53] R. Kumar, M. Kumar, and A. Kumar, (2013) “Some soliton solutions of non linear partial differential equations by Tan-Cot method" IOSR Journal of Mathematics (IOSR-JM) 6(6): 23–28.
- [54] M. Kayum, R. Roy, M. A. Akbar, M. Osman, et al., (2021) “Study of W-shaped, V-shaped, and other type of surfaces of the ZK-BBM and GZD-BBM equations" Optical and Quantum Electronics 53(7): 1–20. DOI: 10.1007/s11082-021-03031-6.
- [55] M. Shakeel and S. T. Mohyud-Din, (2015) “New (G′ /G)-expansion method and its application to the Zakharov-Kuznetsov–Benjamin-Bona-Mahony (ZK–BBM) equation" Journal of the Association of Arab Universities for Basic and Applied Sciences 18: 66–81. DOI: 10.1016/j.jaubas.2014.02.007.
- [56] O. Guner, A. Bekir, L. Moraru, and A. Biswas. “Bright and dark soliton solutions of the generalized Zakharov–Kuznetsov–Benjamin–Bona–Mahony nonlinear evolution equation”. In: Proc. Rom. Acad. Ser. A. 16. 3. 2015, 422–429.
- [57] A. Patel and V. Kumar, (2018) “Dark and kink soliton solutions of the generalized ZK–BBM equation by iterative scheme" Chinese journal of physics 56(3): 819–829. DOI: 10.1016/j.cjph.2018.03.012.