Haoming Sun1,2, Min Chen3, Xiaojing Tian This email address is being protected from spambots. You need JavaScript enabled to view it.1, Bo wang1, Yinan Tao1, Manli Lu2, Xiaona Liu2, Pinhua Zhang2, Guangliang Cui2, Lulu Du2, and Kaifeng Xue2

1School of Mechanical Engineering, Dalian Jiaotong University, Dalian, 116028, China
2School of Physics and Electrical Engineering, Linyi University, Linyi, 276000, China
3School of Electronic Information, Qingdao University, Qingdao, 266071, China


Received: July 4, 2022
Accepted: August 19, 2022
Publication Date: September 28, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||https://doi.org/10.6180/jase.202307_26(7).0001  


Developing a bio-sensor for rapid detection of biological hydrogen sulfide (bio-H2S) is of great significance to human health. Metal-oxide-semiconductor heterostructure based sensors have attracted extensive attention due to their large area, order structure, fast response, and high sensitivity. In this study, we prepared the Cu2O/NiO nanoarrays by the two-dimensional electrochemical in-situ assembly deposition method for bio-H2S detection. The sensors based on Cu2O/NiO nanoarrays were measured by a customized test system. The experimental results indicated that the sensor exhibited excellent sensitivity, low detection level and good selectivity to bio-H2S in the range of 1 ∼ 200 µmol/L. Moreover, we proposed that the superior performance of the nanoarrays was mainly attributed to the synergistic effects of Cu2O/NiO heterostructure as well as vulcanization reaction of Cu2O. The results demonstrate that the Cu2O/NiO nanoarrays based sensor is a potential candidate for high performance bio-H2S sensor.

Keywords: Cu2O, NiO, Nanoarrays, Bio-H2S sensor


  1. [1] T. Xu, N. Scafa, L.-P. Xu, S. Zhou, K. Abdullah AlGhanem, S. Mahboob, B. Fugetsu, and X. Zhang, (2016) “Electrochemical hydrogen sulfide biosensors" Analyst 141: 1185–1195. DOI: 10.1039/C5AN02208H.
  2. [2] M. Asif, A. Aziz, G. Ashraf, Z. Wang, J. Wang, M. Azeem, X. Chen, F. Xiao, and H. Liu, (2018) “FacetInspired Core–Shell Gold Nanoislands on Metal Oxide Octadecahedral Heterostructures: High Sensing Performance toward Sulfide in Biotic Fluids" ACS Applied Materials & Interfaces 10(43): 36675–36685. DOI: 10. 1021/acsami.8b12186.
  3. [3] J. Kang, Z. Li, C. L. Organ, C.-M. Park, C.-t. Yang, A. Pacheco, D. Wang, D. J. Lefer, and M. Xian, (2016) “pH-Controlled Hydrogen Sulfide Release for Myocardial Ischemia-Reperfusion Injury" Journal of the American Chemical Society 138(20): 6336–6339. DOI: 10.1021/ jacs.6b01373.
  4. [4] J. Lee, Y. J. Lee, Y. J. Ahn, S. Choi, and G.-J. Lee, (2018) “A simple and facile paper-based colorimetric assay for detection of free hydrogen sulfide in prostate cancer cells" Sensors and Actuators B: Chemical 256: 828–834. DOI: https://doi.org/10.1016/j.snb.2017.10.019.
  5. [5] M. D. Brown, J. R. Hall, and M. H. Schoenfisch, (2019) “A direct and selective electrochemical hydrogen sulfide sensor" Analytica Chimica Acta 1045: 67–76. DOI: https://doi.org/10.1016/j.aca.2018.08.054.
  6. [6] Z. Pawlak and A. S. Pawlak, (1999) “Modification of iodometric determination of total and reactive sulfide in environmental samples" Talanta 48(2): 347–353. DOI: https://doi.org/10.1016/S0039-9140(98)00253-7.
  7. [7] W. Ciesielski and R. Zakrzewski, (2006) “Iodimetric titration of sulfur compounds in alkaline medium" CHEMIA ANALITYCZNA 51: 653–678.
  8. [8] M. Nishida, T. Sawa, N. Kitajima, K. Ono, H. Inoue, H. Ihara, H. Motohashi, M. Yamamoto, M. Suematsu, H. Kurose, A. van der Vliet, B. A. Freeman, T. Shibata, K. Uchida, Y. Kumagai, and T. Akaike, (2012) “Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration" NATURE CHEMICAL BIOLOGY 8: 714–724. DOI: 10.1038/NCHEMBIO.1018.
  9. [9] X. Yue, Z. Zhu, M. Zhang, and Z. Ye, (2015) “ReactionBased Turn-on Electrochemiluminescent Sensor with a Ruthenium(II) Complex for Selective Detection of Extracellular Hydrogen Sulfide in Rat Brain" Analytical Chemistry 87(3): 1839–1845. DOI: 10.1021/ac503875j.
  10. [10] T. P. Mokoena, H. C. Swart, K. T. Hillie, Z. P. Tshabalala, M. Jozela, J. Tshilongo, and D. E. Motaung, (2022) “Enhanced propanol gas sensing performance of p-type NiO gas sensor induced by exceptionally large surface area and crystallinity" Applied Surface Science 571: 151121. DOI: https://doi.org/10.1016/j.apsusc.2021.151121.
  11. [11] P. P. Liu, X. Liu, X. H. Huo, Y. Tang, J. Xu, and H. Ju, (2017) “TiO2–BiVO4 Heterostructure to Enhance Photoelectrochemical Efficiency for Sensitive Aptasensing" ACS Applied Materials & Interfaces 9(32): 27185– 27192. DOI: 10.1021/acsami.7b07047.
  12. [12] A. K. Panda, M. Keerthi, R. Sakthivel, U. Dhawan, X. Liu, and R.-J. Chung, (2022) “Biocompatible Electrochemical Sensor Based on Platinum-Nickel Alloy Nanoparticles for In Situ Monitoring of Hydrogen Sulfide in Breast Cancer Cells" Nanomaterials 12(2): DOI: 10.3390/nano12020258.
  13. [13] Z. Yu, J. Gao, L. Xu, T. Liu, Y. Liu, X. Wang, H. Suo, and C. Zhao, (2020) “Fabrication of Lettuce-Like ZnO Gas Sensor with Enhanced H2S Gas Sensitivity" Crystals 10(3): DOI: 10.3390/cryst10030145.
  14. [14] S. K. Hyun, B. Nam, T. K. Ko, C. Lee, S. B. Choi, and W. I. Lee, (2020) “Optimal Composition of ZnO/WO3 Composite Nanoparticle Gas Sensors" Physica Status Solidi (A) Applications and Materials Science 217(12): DOI: 10.1002/pssa.201900874.
  15. [15] X. Kou, F. Meng, K. Chen, T. Wang, P. Sun, F. Liu, X. Yan, Y. Sun, F. Liu, K. Shimanoe, and G. Lu, (2020) “High-performance acetone gas sensor based on Ru-doped SnO2 nanofibers" Sensors and Actuators B: Chemical 320: 128292. DOI: https://doi.org/10.1016/j.snb. 2020.128292.
  16. [16] H. He, C. Zhao, J. Xu, K. Qu, Z. Jiang, Z. Gao, and Y.-Y. Song, (2021) “Exploiting Free-Standing p-CuO/nTiO2 Nanochannels as a Flexible Gas Sensor with High Sensitivity for H2S at Room Temperature" ACS Sensors 6(9): 3387–3397. DOI: 10.1021/acssensors.1c01256.
  17. [17] S. Zhang, M. Yang, K. Liang, A. Turak, B. Zhang, D. Meng, C. Wang, F. Qu, W. Cheng, and M. Yang, (2019) “An acetone gas sensor based on nanosized Ptloaded Fe2O3 nanocubes" Sensors and Actuators B: Chemical 290: 59–67. DOI: https://doi.org/10.1016/ j.snb.2019.03.082.
  18. [18] M. J. Montgomery, N. V. Sugak, K. R. Yang, J. M. Rogers, S. A. Kube, A. C. Ratinov, J. Schroers, V. S. Batista, and L. D. Pfefferle, (2020) “Semiconductor-toconductor transition in 2D copper(ii) oxide nanosheets through surface sulfur-functionalization" Nanoscale 12: 14549–14559. DOI: 10.1039/D0NR02208J.
  19. [19] Z. Yang, Y. Zhang, L. Zhao, T. Fei, S. Liu, and T. Zhang, (2022) “The synergistic effects of oxygen vacancy engineering and surface gold decoration on commercial SnO2 for ppb-level DMMP sensing" Journal of Colloid and Interface Science 608: 2703–2717. DOI: https : //doi.org/10.1016/j.jcis.2021.10.192.
  20. [20] D. Li, L. Qin, P. Zhao, Y. Zhang, D. Liu, F. Liu, B. Kang, Y. Wang, H. Song, T. Zhang, and G. Lu, (2018) “Preparation and gas-sensing performances of ZnO/CuO rough nanotubular arrays for low-working temperature H2S detection" Sensors and Actuators B: Chemical 254: 834–841. DOI: https://doi.org/10.1016/j.snb. 2017.06.110.
  21. [21] P. Zhang, H. Zhu, K. Xue, L. Chen, C. Shi, D. Wang, J. Li, X. Wang, and G. Cui, (2020) “H2S detection at low temperatures by Cu2O/Fe2O3 heterostructure ordered array sensors" RSC Adv. 10: 8332–8339. DOI: 10.1039/ C9RA10054G.
  22. [22] Q. Zhang, G. Xie, M. Xu, Y. Su, H. Tai, H. Du, and Y. Jiang, (2018) “Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles" Sensors and Actuators B: Chemical 259: 269–281. DOI: https://doi.org/10.1016/j.snb.2017.12.052.
  23. [23] Q. Hu, B. Huang, Y. Li, S. Zhang, Y. Zhang, X. Hua, G. Liu, B. Li, J. Zhou, E. Xie, and Z. Zhang, (2020) “Methanol gas detection of electrospun CeO2 nanofibers by regulating Ce3+/ Ce4+ mole ratio via Pd doping" Sensors and Actuators B: Chemical 307: 127638. DOI: https://doi.org/10.1016/j.snb.2019.127638.
  24. [24] L. Wang, Z. Lou, R. Zhang, T. Zhou, J. Deng, and T. Zhang, (2016) “Hybrid Co3O4/SnO2 Core–Shell Nanospheres as Real-Time Rapid-Response Sensors for Ammonia Gas" ACS Applied Materials & Interfaces 8(10): 6539–6545. DOI: 10.1021/acsami.6b00305.
  25. [25] H. Chen, S. Ao, G.-D. Li, Q. Gao, X. Zou, and C. Wei, (2019) “Enhanced sensing performance to toluene and xylene by constructing NiGa2O4-NiO heterostructures" Sensors and Actuators B: Chemical 282: 331–338. DOI: https://doi.org/10.1016/j.snb.2018.11.072.
  26. [26] Y. Wang, F. Qu, J. Liu, Y. Wang, J. Zhou, and S. Ruan, (2015) “Enhanced H2S sensing characteristics of CuONiO core-shell microspheres sensors" Sensors and Actuators B: Chemical 209: 515–523. DOI: https://doi. org/10.1016/j.snb.2014.12.010.
  27. [27] L. Sui, T. Yu, D. Zhao, X. Cheng, X. Zhang, P. Wang, Y. Xu, S. Gao, H. Zhao, Y. Gao, and L. Huo, (2020) “In situ deposited hierarchical CuO/NiO nanowall arrays film sensor with enhanced gas sensing performance to H2S" Journal of Hazardous Materials 385: 121570. DOI: https://doi.org/10.1016/j.jhazmat.2019.121570.
  28. [28] G. Cui, P. Zhang, L. Chen, X. Wang, J. Li, C. Shi, and D. Wang, (2017) “Highly sensitive H2S sensors based on Cu2O/Co3O4 nano/microstructure heteroarrays at and below room temperature" Scientific Reports 7: DOI: 10.1038/srep43887.
  29. [29] P. Zhang, H. Sun, W. Guan, J. Liang, X. Zhu, J. Zhang, M. Chen, M. Cao, W. Qian, K. Gao, and G. Cui, (2018) “Au@Cu Nanoarrays with Uniform Long-Range Ordered Structure: Synthesis and SERS Applications" Micromachines 9(12): DOI: 10.3390/mi9120678.
  30. [30] G. Cui, L. Gao, B. Yao, S. Wang, P. Zhang, and M. Zhang, (2013) “Electrochemistry of CuO/In2O3 p–n heterojunction nano/microstructure array with sensitivity to H2 at and below room-temperature" Electrochemistry Communications 30: 42–45. DOI: https://doi.org/10. 1016/j.elecom.2013.02.003.
  31. [31] F. Bayat and S. Sheibani, (2022) “Enhancement of photocatalytic activity of CuO-Cu2O heterostructures through the controlled content of Cu2O" Materials Research Bulletin 145: 111561. DOI: https://doi.org/10.1016/j. materresbull.2021.111561.
  32. [32] N. Wang, Y. Zhou, K. Chen, T. Wang, P. Sun, C. Wang, X. Chuai, S. Zhang, X. Liu, and G. Lu, (2021) “Double shell Cu2O hollow microspheres as sensing material for high performance n-propanol sensor" Sensors and Actuators B: Chemical 333: 129540. DOI: https://doi.org/ 10.1016/j.snb.2021.129540.
  33. [33] L. Li, J. Wang, J. Xiao, J. Yan, H. Fan, L. Sun, L. Xue, and Z. Tang, (2021) “Time-dependent corrosion behavior of electroless Ni-P coating in H2S/Cl− environment" International Journal of Hydrogen Energy 46(21): 11849–11864. DOI: https : / / doi . org / 10 . 1016 / j . ijhydene.2021.01.053.
  34. [34] G. Yang, L. Wu, B. Jiang, W. Yang, J. Qi, K. Cao, Q. Meng, A. K. Mustafa, W. Mu, S. Zhang, S. H. Snyder, and R. Wang, (2008) “H2S as a physiologic vasorelaxant: Hypertension in mice with deletion of cystathio-nine gamma-lyase" Science 322(5901): 587–590. DOI: 10.1126/science.1162667.
  35. [35] Z.-h. Yang, D.-p. Zhang, W.-x. Zhang, and M. Chen, (2009) “Controlled synthesis of cuprous oxide nanospheres and copper sulfide hollow nanospheres" Journal of Physics and Chemistry of Solids 70(5): 840–846. DOI: https://doi.org/10.1016/j.jpcs.2009.04.004.
  36. [36] J. R. Vegelius, K. O. Kvashnina, H. Hollmark, M. Klintenberg, Y. O. Kvashnin, I. L. Soroka, L. Werme, and S. M. Butorin, (2012) “X-ray Spectroscopic Study of Cu2S, CuS, and Copper Films Exposed to Na2S Solutions" The Journal of Physical Chemistry C 116(42): 22293–22300. DOI: 10.1021/jp302390c.


42nd percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.