Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Liang ChenThis email address is being protected from spambots. You need JavaScript enabled to view it.

Chongqing University of Posts and Telecommunications, Chongqing, 400065, China


 

Received: January 19, 2022
Accepted: July 2, 2022
Publication Date: October 14, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202307_26(7).0010  


ABSTRACT


This study aims to develop a surrogate artificial neural network-based technique for predicting the compressive strength of concrete, which is the most significant factor in the life service of concrete and its durability in civil construction projects of civil engineering. For this goal, a data set for high-performance concrete is gathered from the literature repository, which includes a different percentage of fly ash, silica fume, and superplasticizer in the mix designs. The data set is applied to train and validate the optimal structured artificial neural network optimized by innovative equilibrium optimization and particle swarm optimization algorithms. The results showed that the EOANN-I and PANN-I model with the R2 and RMSE values of 0.9889,1.771, 0.9881, and 1.8813, stood at the first and second stage of the most capable models in the prediction of HPC compressive strength. Although the PANN-I model’s complexity is lower than the EOANN-I model, the rate of its prediction accuracy covers its lack of complexity.


Keywords: HPC concrete; compressive strength; artificial neural network; equilibrium optimization algorithm; particle swarm optimization algorithm


REFERENCES


  1. [1] P. Asteris, K. Kolovos, M. Douvika, and K. Roinos, (2016) “Prediction of self-compacting concrete strength using artificial neural networks" European Journal of Environmental and Civil Engineering 20: s102–s122. DOI: 10.1080/19648189.2016.1246693.
  2. [2] T. Nochaiya, W. Wongkeo, and A. Chaipanich, (2010) “Utilization of fly ash with silica fume and properties of Portland cement-fly ash-silica fume concrete" Fuel 89(3): 768–774. DOI: 10.1016/j.fuel.2009.10.003.
  3. [3] G. Rutkowska, P. Wichowski, M. Franus, M. Mendryk, and J. Fronczyk, (2020) “Modification of ordinary concrete using fly ash from combustion of municipal sewage sludge" Materials 13(2): DOI: 10.3390/ma13020487.
  4. [4] I. Topçu and M. Saridemir, (2008) “Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic" Computational Materials Science 41(3): 305–311. DOI: 10.1016/j .commatsci.2007.04.009.
  5. [5] M. Pala, E. Özbay, A. Özta¸s, and M. Yuce, (2007) “Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks" Construction and Building Materials 21(2): 384–394. DOI: 10.1016/j.conbuildmat.2005.08.009.
  6. [6] A. Neville and P.-C. Aïtcin, (1998) “High performance concrete - An overview" Materials and Structures/Materiaux et Constructions 31(2): 111–117.DOI: 10.1007/BF02486473. 
  7. [7] P. Ramanathan, I. Baskar, P. Muthupriya, and R. Venkatasubramani, (2013) “Performance of selfcompacting concrete containing different mineral admixtures" KSCE Journal of Civil Engineering 17(2): 465–472. DOI: 10.1007/s12205-013-1882-8.
  8. [8] M. Jalal, A. Pouladkhan, O. Harandi, and D. Jafari, (2015) “Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete" Construction and Building Materials 94: 90–104. DOI: 10.1016/j.conbuildmat.2015.07.001.
  9. [9] P. Matos, M. Foiato, and J. Prudêncio L.R., (2019) “Ecological, fresh state and long-term mechanical properties of high-volume fly ash high-performance self-compacting concrete" Construction and Building Materials 203: 282–293. DOI: 10.1016/j.conbuildmat.2019.01.074.
  10. [10] T. Hansen, (1990) “Long-term strength of high fly ash concretes" Cement and Concrete Research 20(2): 193–196. DOI: 10.1016/0008-8846(90)90071-5.
  11. [11] P. Lu, S. Chen, and Y. Zheng, (2012) “Artificial intelligence in civil engineering" Mathematical Problems in Engineering 2012: DOI: 10.1155/2012/145974.
  12. [12] K. Ganesh Babu and G. Siva Nageswara Rao, (1996) “Efficiency of fly ash in concrete with age" Cement and Concrete Research 26(3): 465–474. DOI: 10.1016/S0008-8846(96)85034-4.
  13. [13] K. Ganesh Babu and G. Siva Nageswara Rao, (1994) “Early strength behaviour of fly ash concretes" Cement and Concrete Research 24(2): 277–284. DOI: 10.1016/0008-8846(94)90053-1.
  14. [14] L. Lam, Y. Wong, and C. Poon, (1998) “Effect of fly ash and silica fume on compressive and fracture behaviors of concrete" Cement and Concrete Research 28(2): 271–283. DOI: 10.1016/S0008-8846(97)00269-X.
  15. [15] B. Sabir, (1997) “Mechanical properties and frost resistance of silica fume concrete" Cement and Concrete Composites 19(4): 285–294. DOI: 10.1016/S0958-9465(97)00020-6.
  16. [16] Z. Bajja,W. Dridi, A. Darquennes, R. Bennacer, P. Le Bescop, and M. Rahim, (2017) “Influence of slurried silica fume on microstructure and tritiated water diffusivity of cement pastes" Construction and Building Materials 132: 85–93. DOI: 10.1016/j.conbuildmat.2016.11.097.
  17. [17] M. Rostami and K. Behfarnia, (2017) “The effect of silica fume on durability of alkali activated slag concrete" Construction and Building Materials 134: 262–268. DOI: 10.1016/j.conbuildmat.2016.12.072.
  18. [18] H. Li, H.-G. Xiao, J. Yuan, and J. Ou, (2004) “Microstructure of cement mortar with nano-particles" Composites Part B: Engineering 35(2): 185–189. DOI: 10.1016/S1359-8368(03)00052-0.
  19. [19] L. Singh, S. Karade, S. Bhattacharyya, M. Yousuf, and S. Ahalawat, (2013) “Beneficial role of nanosilica in cement based materials - A review" Construction and Building Materials 47: 1069–1077. DOI: 10.1016/j.conbuildmat.2013.05.052.
  20. [20] A. K. Mukhopadhyay, (2011) “Next-generation nanobased concrete construction products: a review" Nanotechnology in civil infrastructure: 207–223.
  21. [21] L. Li, J. Zheng, J. Zhu, and A. Kwan, (2018) “Combined usage of micro-silica and nano-silica in concrete: SP demand, cementing efficiencies and synergistic effect" Construction and Building Materials 168: 622–632. DOI: 10.1016/j.conbuildmat.2018.02.181.
  22. [22] M. Mazloom, A. Ramezanianpour, and J. Brooks, (2004) “Effect of silica fume on mechanical properties of high-strength concrete" Cement and Concrete Composites 26(4): 347–357. DOI: 10.1016/S0958-9465(03)00017-9.
  23. [23] M. Norhasri, M. Hamidah, and A. Fadzil, (2017) “Applications of using nano material in concrete: A review" Construction and Building Materials 133: 91–97. DOI: 10.1016/j.conbuildmat.2016.12.005.
  24. [24] A. Rashad, (2014) “A comprehensive overview about the effect of nano-SiO2 on some properties of traditional cementitious materials and alkali-activated fly ash" Construction and Building Materials 52: 437–464. DOI: 10.1016/j.conbuildmat.2013.10.101.
  25. [25] F. Shaikh, Y. Shafaei, and P. Sarker, (2016) “Effect of nano and micro-silica on bond behaviour of steel and polypropylene fibres in high volume fly ash mortar" Construction and Building Materials 115: 690–698. DOI: 10.1016/j.conbuildmat.2016.04.090.
  26. [26] R. Siddique, (2011) “Utilization of silica fume in concrete: Review of hardened properties" Resources, Conservation and Recycling 55(11): 923–932. DOI: 10.1016/j.resconrec.2011.06.012.
  27. [27] R. Siddique and N. Chahal, (2011) “Use of silicon and ferrosilicon industry by-products (silica fume) in cement paste and mortar" Resources, Conservation and Recycling 55(8): 739–744. DOI: 10.1016/j.resconrec.2011.03.004.
  28. [28] S. H. Kosmatka, W. C. Panarese, and B. Kerkhoff. Design and control of concrete mixtures. 5420. Portland Cement Association Skokie, IL, 2002.
  29. [29] J.-S. Chou, C.-K. Chiu, M. Farfoura, and I. Al-Taharwa, (2011) “Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques" Journal of Computing in Civil Engineering 25(3): 242–253. DOI: 10.1061/(ASCE)CP.1943-5487.0000088.
  30. [30] S. Lai and M. Serra, (1997) “Concrete strength prediction by means of neural network" Construction and Building Materials 11(2): 93–98. DOI: 10.1016/S0950-0618(97)00007-X.
  31. [31] H.-G. Ni and J.-Z. Wang, (2000) “Prediction of compressive strength of concrete by neural networks" Cement and Concrete Research 30(8): 1245–1250. DOI: 10.1016/S0008-8846(00)00345-8.
  32. [32] A. Özta¸s, M. Pala, E. Özbay, E. Kanca, N. Çaˇ glar, and M. Bhatti, (2006) “Predicting the compressive strength and slump of high strength concrete using neural network" Construction and Building Materials 20(9): 769–775. DOI: 10.1016/j.conbuildmat.2005.01.054.
  33. [33] M. Sło ´ nski, (2010) “A comparison of model selection methods for compressive strength prediction of high-performance concrete using neural networks" Computers and Structures 88(21-22): 1248–1253. DOI: 10.1016/j.compstruc.2010.07.003.
  34. [34] J. Kasperkiewicz, J. Racz, and A. Dubrawski, (1995) “HPC strength prediction using artificial neural network" Journal of Computing in Civil Engineering 9(4): 279–284. DOI: 10.1061/(ASCE)0887- 3801(1995)9:4(279).
  35. [35] S. Lee, (2003) “Prediction of concrete strength using artificial neural networks" Engineering Structures 25(7): 849–857. DOI: 10.1016/S0141-0296(03)00004-X.
  36. [36] M. Saridemir, (2009) “Prediction of compressive strength of concretes containing metakaolin and silica fume by artificial neural networks" Advances in Engineering Software 40(5): 350–355. DOI: 10.1016/j.advengsoft.2008.05.002.
  37. [37] D.-K. Bui, T. Nguyen, J.-S. Chou, H. Nguyen-Xuan, and T. Ngo, (2018) “A modified firefly algorithmartificial neural network expert system for predicting compressive and tensile strength of high-performance concrete" Construction and Building Materials 180: 320–333. DOI: 10.1016/j.conbuildmat.2018.05.201.
  38. [38] G. Pazouki, E. Golafshani, and A. Behnood, (2022) “Predicting the compressive strength of self-compacting concrete containing Class F fly ash using metaheuristic radial basis function neural network" Structural Concrete 23(2): 1191–1213. DOI: 10.1002/suco.202000047.
  39. [39] M. Saridemir, (2014) “Effect of specimen size and shape on compressive strength of concrete containing fly ash: Application of genetic programming for design" Materials and Design 56: 297–304. DOI: 10.1016/j.matdes.2013.10.073.
  40. [40] A. Behnood and E. Golafshani, (2018) “Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves" Journal of Cleaner Production 202: 54–64. DOI: 10.1016/j.jclepro.2018.08.065.
  41. [41] H. Erdal, O. Karakurt, and E. Namli, (2013) “High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform" Engineering Applications of Artificial Intelligence 26(4): 1246–1254. DOI: 10.1016/j.engappai.2012.10.014.
  42. [42] R. Lima, G. De Almeida, A. Braga, and M. Cardoso, (2016) “Trend modelling with artificial neural networks. Case study: Operating zones identification for higher SO3 incorporation in cement clinker" Engineering Applications of Artificial Intelligence 54: 17–25. DOI: 10.1016/j.engappai.2016.05.002.
  43. [43] I. Topçu, C. Karakurt, and M. Saridemir, (2008) “Predicting the strength development of cements produced with different pozzolans by neural network and fuzzy logic" Materials and Design 29(10): 1986–1991. DOI: 10.1016/j.matdes.2008.04.005.
  44. [44] L. Chen, C.-H. Kou, and S.-W. Ma, (2014) “Prediction of slump flow of high-performance concrete via parallel hyper-cubic gene-expression programming" Engineering Applications of Artificial Intelligence 34: 66–74. DOI: 10.1016/j.engappai.2014.05.005.
  45. [45] I. Topçu and M. Saridemir, (2007) “Prediction of properties of waste AAC aggregate concrete using artificial neural network" Computational Materials Science 41(1): 117–125. DOI: 10.1016/j.commatsci.2007.03.010.
  46. [46] R. Eberhart and J. Kennedy. “A new optimizer using particle swarm theory”. In: MHS’95. Proceedings of the sixth international symposium on micro machine and human science. Ieee. 1995, 39–43. DOI: 10.1109/MHS.1995.494215.
  47. [47] M. Patil, M. Naidu, A. Vasan, and M. Varma, (2020) “Water distribution system design using multi-objective particle swarm optimisation" Sadhana - Academy Proceedings in Engineering Sciences 45(1): DOI: 10.1007/s12046-019-1258-y.
  48. [48] A. Maleki, (2021) “Optimal operation of a grid-connected fuel cell based combined heat and power systems using particle swarm optimisation for residential sector" International Journal of Ambient Energy 42(5): 550–557. DOI: 10.1080/01430750.2018.1562968.
  49. [49] G. Perampalam, K. Poologanathan, S. Gunalan, J. Ye, and B. Nagaratnam, (2019) “Optimum design of cold-formed steel beams: particle swarm optimisation and numerical analysis" ce/papers 3(3-4): 205–210. DOI: 10.1002/cepa.1159.
  50. [50] F. Masoumi, S. Najjar-Ghabel, A. Safarzadeh, and B. Sadaghat, (2020) “Automatic calibration of the groundwater simulation model with high parameter dimensionality using sequential uncertainty fitting approach" Water Science and Technology:Water Supply 20(8): 3487–3501. DOI: 10.2166/ws.2020.241.
  51. [51] A. Faramarzi, M. Heidarinejad, B. Stephens, and S. Mirjalili, (2020) “Equilibrium optimizer: A novel optimization algorithm" Knowledge-Based Systems 191: DOI: 10.1016/j.knosys.2019.105190.
  52. [52] S. Gupta, H. Abderazek, B. S. Yıldız, A. R. Yildiz, S. Mirjalili, and S. M. Sait, (2021) “Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems" Expert Systems with Applications 183: 115351. DOI: 10.1016/j.eswa.2021.115351.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.