REFERENCES
- [1] P. Asteris, K. Kolovos, M. Douvika, and K. Roinos, (2016) “Prediction of self-compacting concrete strength using artificial neural networks" European Journal of Environmental and Civil Engineering 20: s102–s122. DOI: 10.1080/19648189.2016.1246693.
- [2] T. Nochaiya, W. Wongkeo, and A. Chaipanich, (2010) “Utilization of fly ash with silica fume and properties of Portland cement-fly ash-silica fume concrete" Fuel 89(3): 768–774. DOI: 10.1016/j.fuel.2009.10.003.
- [3] G. Rutkowska, P. Wichowski, M. Franus, M. Mendryk, and J. Fronczyk, (2020) “Modification of ordinary concrete using fly ash from combustion of municipal sewage sludge" Materials 13(2): DOI: 10.3390/ma13020487.
- [4] I. Topçu and M. Saridemir, (2008) “Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic" Computational Materials Science 41(3): 305–311. DOI: 10.1016/j .commatsci.2007.04.009.
- [5] M. Pala, E. Özbay, A. Özta¸s, and M. Yuce, (2007) “Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks" Construction and Building Materials 21(2): 384–394. DOI: 10.1016/j.conbuildmat.2005.08.009.
- [6] A. Neville and P.-C. Aïtcin, (1998) “High performance concrete - An overview" Materials and Structures/Materiaux et Constructions 31(2): 111–117.DOI: 10.1007/BF02486473.
- [7] P. Ramanathan, I. Baskar, P. Muthupriya, and R. Venkatasubramani, (2013) “Performance of selfcompacting concrete containing different mineral admixtures" KSCE Journal of Civil Engineering 17(2): 465–472. DOI: 10.1007/s12205-013-1882-8.
- [8] M. Jalal, A. Pouladkhan, O. Harandi, and D. Jafari, (2015) “Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete" Construction and Building Materials 94: 90–104. DOI: 10.1016/j.conbuildmat.2015.07.001.
- [9] P. Matos, M. Foiato, and J. Prudêncio L.R., (2019) “Ecological, fresh state and long-term mechanical properties of high-volume fly ash high-performance self-compacting concrete" Construction and Building Materials 203: 282–293. DOI: 10.1016/j.conbuildmat.2019.01.074.
- [10] T. Hansen, (1990) “Long-term strength of high fly ash concretes" Cement and Concrete Research 20(2): 193–196. DOI: 10.1016/0008-8846(90)90071-5.
- [11] P. Lu, S. Chen, and Y. Zheng, (2012) “Artificial intelligence in civil engineering" Mathematical Problems in Engineering 2012: DOI: 10.1155/2012/145974.
- [12] K. Ganesh Babu and G. Siva Nageswara Rao, (1996) “Efficiency of fly ash in concrete with age" Cement and Concrete Research 26(3): 465–474. DOI: 10.1016/S0008-8846(96)85034-4.
- [13] K. Ganesh Babu and G. Siva Nageswara Rao, (1994) “Early strength behaviour of fly ash concretes" Cement and Concrete Research 24(2): 277–284. DOI: 10.1016/0008-8846(94)90053-1.
- [14] L. Lam, Y. Wong, and C. Poon, (1998) “Effect of fly ash and silica fume on compressive and fracture behaviors of concrete" Cement and Concrete Research 28(2): 271–283. DOI: 10.1016/S0008-8846(97)00269-X.
- [15] B. Sabir, (1997) “Mechanical properties and frost resistance of silica fume concrete" Cement and Concrete Composites 19(4): 285–294. DOI: 10.1016/S0958-9465(97)00020-6.
- [16] Z. Bajja,W. Dridi, A. Darquennes, R. Bennacer, P. Le Bescop, and M. Rahim, (2017) “Influence of slurried silica fume on microstructure and tritiated water diffusivity of cement pastes" Construction and Building Materials 132: 85–93. DOI: 10.1016/j.conbuildmat.2016.11.097.
- [17] M. Rostami and K. Behfarnia, (2017) “The effect of silica fume on durability of alkali activated slag concrete" Construction and Building Materials 134: 262–268. DOI: 10.1016/j.conbuildmat.2016.12.072.
- [18] H. Li, H.-G. Xiao, J. Yuan, and J. Ou, (2004) “Microstructure of cement mortar with nano-particles" Composites Part B: Engineering 35(2): 185–189. DOI: 10.1016/S1359-8368(03)00052-0.
- [19] L. Singh, S. Karade, S. Bhattacharyya, M. Yousuf, and S. Ahalawat, (2013) “Beneficial role of nanosilica in cement based materials - A review" Construction and Building Materials 47: 1069–1077. DOI: 10.1016/j.conbuildmat.2013.05.052.
- [20] A. K. Mukhopadhyay, (2011) “Next-generation nanobased concrete construction products: a review" Nanotechnology in civil infrastructure: 207–223.
- [21] L. Li, J. Zheng, J. Zhu, and A. Kwan, (2018) “Combined usage of micro-silica and nano-silica in concrete: SP demand, cementing efficiencies and synergistic effect" Construction and Building Materials 168: 622–632. DOI: 10.1016/j.conbuildmat.2018.02.181.
- [22] M. Mazloom, A. Ramezanianpour, and J. Brooks, (2004) “Effect of silica fume on mechanical properties of high-strength concrete" Cement and Concrete Composites 26(4): 347–357. DOI: 10.1016/S0958-9465(03)00017-9.
- [23] M. Norhasri, M. Hamidah, and A. Fadzil, (2017) “Applications of using nano material in concrete: A review" Construction and Building Materials 133: 91–97. DOI: 10.1016/j.conbuildmat.2016.12.005.
- [24] A. Rashad, (2014) “A comprehensive overview about the effect of nano-SiO2 on some properties of traditional cementitious materials and alkali-activated fly ash" Construction and Building Materials 52: 437–464. DOI: 10.1016/j.conbuildmat.2013.10.101.
- [25] F. Shaikh, Y. Shafaei, and P. Sarker, (2016) “Effect of nano and micro-silica on bond behaviour of steel and polypropylene fibres in high volume fly ash mortar" Construction and Building Materials 115: 690–698. DOI: 10.1016/j.conbuildmat.2016.04.090.
- [26] R. Siddique, (2011) “Utilization of silica fume in concrete: Review of hardened properties" Resources, Conservation and Recycling 55(11): 923–932. DOI: 10.1016/j.resconrec.2011.06.012.
- [27] R. Siddique and N. Chahal, (2011) “Use of silicon and ferrosilicon industry by-products (silica fume) in cement paste and mortar" Resources, Conservation and Recycling 55(8): 739–744. DOI: 10.1016/j.resconrec.2011.03.004.
- [28] S. H. Kosmatka, W. C. Panarese, and B. Kerkhoff. Design and control of concrete mixtures. 5420. Portland Cement Association Skokie, IL, 2002.
- [29] J.-S. Chou, C.-K. Chiu, M. Farfoura, and I. Al-Taharwa, (2011) “Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques" Journal of Computing in Civil Engineering 25(3): 242–253. DOI: 10.1061/(ASCE)CP.1943-5487.0000088.
- [30] S. Lai and M. Serra, (1997) “Concrete strength prediction by means of neural network" Construction and Building Materials 11(2): 93–98. DOI: 10.1016/S0950-0618(97)00007-X.
- [31] H.-G. Ni and J.-Z. Wang, (2000) “Prediction of compressive strength of concrete by neural networks" Cement and Concrete Research 30(8): 1245–1250. DOI: 10.1016/S0008-8846(00)00345-8.
- [32] A. Özta¸s, M. Pala, E. Özbay, E. Kanca, N. Çaˇ glar, and M. Bhatti, (2006) “Predicting the compressive strength and slump of high strength concrete using neural network" Construction and Building Materials 20(9): 769–775. DOI: 10.1016/j.conbuildmat.2005.01.054.
- [33] M. Sło ´ nski, (2010) “A comparison of model selection methods for compressive strength prediction of high-performance concrete using neural networks" Computers and Structures 88(21-22): 1248–1253. DOI: 10.1016/j.compstruc.2010.07.003.
- [34] J. Kasperkiewicz, J. Racz, and A. Dubrawski, (1995) “HPC strength prediction using artificial neural network" Journal of Computing in Civil Engineering 9(4): 279–284. DOI: 10.1061/(ASCE)0887- 3801(1995)9:4(279).
- [35] S. Lee, (2003) “Prediction of concrete strength using artificial neural networks" Engineering Structures 25(7): 849–857. DOI: 10.1016/S0141-0296(03)00004-X.
- [36] M. Saridemir, (2009) “Prediction of compressive strength of concretes containing metakaolin and silica fume by artificial neural networks" Advances in Engineering Software 40(5): 350–355. DOI: 10.1016/j.advengsoft.2008.05.002.
- [37] D.-K. Bui, T. Nguyen, J.-S. Chou, H. Nguyen-Xuan, and T. Ngo, (2018) “A modified firefly algorithmartificial neural network expert system for predicting compressive and tensile strength of high-performance concrete" Construction and Building Materials 180: 320–333. DOI: 10.1016/j.conbuildmat.2018.05.201.
- [38] G. Pazouki, E. Golafshani, and A. Behnood, (2022) “Predicting the compressive strength of self-compacting concrete containing Class F fly ash using metaheuristic radial basis function neural network" Structural Concrete 23(2): 1191–1213. DOI: 10.1002/suco.202000047.
- [39] M. Saridemir, (2014) “Effect of specimen size and shape on compressive strength of concrete containing fly ash: Application of genetic programming for design" Materials and Design 56: 297–304. DOI: 10.1016/j.matdes.2013.10.073.
- [40] A. Behnood and E. Golafshani, (2018) “Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves" Journal of Cleaner Production 202: 54–64. DOI: 10.1016/j.jclepro.2018.08.065.
- [41] H. Erdal, O. Karakurt, and E. Namli, (2013) “High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform" Engineering Applications of Artificial Intelligence 26(4): 1246–1254. DOI: 10.1016/j.engappai.2012.10.014.
- [42] R. Lima, G. De Almeida, A. Braga, and M. Cardoso, (2016) “Trend modelling with artificial neural networks. Case study: Operating zones identification for higher SO3 incorporation in cement clinker" Engineering Applications of Artificial Intelligence 54: 17–25. DOI: 10.1016/j.engappai.2016.05.002.
- [43] I. Topçu, C. Karakurt, and M. Saridemir, (2008) “Predicting the strength development of cements produced with different pozzolans by neural network and fuzzy logic" Materials and Design 29(10): 1986–1991. DOI: 10.1016/j.matdes.2008.04.005.
- [44] L. Chen, C.-H. Kou, and S.-W. Ma, (2014) “Prediction of slump flow of high-performance concrete via parallel hyper-cubic gene-expression programming" Engineering Applications of Artificial Intelligence 34: 66–74. DOI: 10.1016/j.engappai.2014.05.005.
- [45] I. Topçu and M. Saridemir, (2007) “Prediction of properties of waste AAC aggregate concrete using artificial neural network" Computational Materials Science 41(1): 117–125. DOI: 10.1016/j.commatsci.2007.03.010.
- [46] R. Eberhart and J. Kennedy. “A new optimizer using particle swarm theory”. In: MHS’95. Proceedings of the sixth international symposium on micro machine and human science. Ieee. 1995, 39–43. DOI: 10.1109/MHS.1995.494215.
- [47] M. Patil, M. Naidu, A. Vasan, and M. Varma, (2020) “Water distribution system design using multi-objective particle swarm optimisation" Sadhana - Academy Proceedings in Engineering Sciences 45(1): DOI: 10.1007/s12046-019-1258-y.
- [48] A. Maleki, (2021) “Optimal operation of a grid-connected fuel cell based combined heat and power systems using particle swarm optimisation for residential sector" International Journal of Ambient Energy 42(5): 550–557. DOI: 10.1080/01430750.2018.1562968.
- [49] G. Perampalam, K. Poologanathan, S. Gunalan, J. Ye, and B. Nagaratnam, (2019) “Optimum design of cold-formed steel beams: particle swarm optimisation and numerical analysis" ce/papers 3(3-4): 205–210. DOI: 10.1002/cepa.1159.
- [50] F. Masoumi, S. Najjar-Ghabel, A. Safarzadeh, and B. Sadaghat, (2020) “Automatic calibration of the groundwater simulation model with high parameter dimensionality using sequential uncertainty fitting approach" Water Science and Technology:Water Supply 20(8): 3487–3501. DOI: 10.2166/ws.2020.241.
- [51] A. Faramarzi, M. Heidarinejad, B. Stephens, and S. Mirjalili, (2020) “Equilibrium optimizer: A novel optimization algorithm" Knowledge-Based Systems 191: DOI: 10.1016/j.knosys.2019.105190.
- [52] S. Gupta, H. Abderazek, B. S. Yıldız, A. R. Yildiz, S. Mirjalili, and S. M. Sait, (2021) “Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems" Expert Systems with Applications 183: 115351. DOI: 10.1016/j.eswa.2021.115351.