REFERENCES
- [1] Haynes, R. H. and Burton, A. C., “Role of Non-Newtonian Behaviour of Blood in Hemodynamics,” Am. J. Physiol., Vol. 197, p. 943 (1959).
- [2] Srivastava, V. P. and Saxena, M., “ATwo-Fluid Model of Non-Newtonian Blood Flow Induced by Peristaltic Waves,” Rheol.Acta,Vol.34,No.4,pp.406414(1995). doi: 10.1007/BF00367155
- [3] Haynes, R. H., “Physical Basis of the Dependence of Blood Viscosityon Tube Radius,” Am. J. Physiol., Vol. 198, pp. 11931200 (1960).
- [4] Bugliarello, G. and Sevilla, J., “Velocity Distribution and other Characteristics of Steady and Pulsatile Blood Flow in Fine Glass Tubes,” Biorheology, Vol. 7, pp. 85107 (1970).
- [5] Sharan, M. and Popel, A. S., “ATwo-phase Model for Flow of Blood in Narrow Tubes with Increased Effective Viscosity near the Wall,” Biorheology, Vol. 38, pp. 415428 (2001).
- [6] Srivastava, V. P., “A Theoretical Model for Blood Flow in Small Vessels,” Appl. Appl. Math., Vol. 2, pp. 5165 (2007).
- [7] Haldar, K. and Andersson, H. I., “Two-layered Model of Blood Flow through Stenosed Arteries,” Acta Mech., Vol. 117, No. 1, pp. 221228 (1996). doi: 10.1007/BF 01181050
- [8] Chaturani, P. and Ponalagusamy, R.,“Pulsatile Flow of Casson’s Fluid through Stenosed Arteries with Applicationsto Blood Flow,” Biorheology, Vol. 23, pp. 499 511 (1986).
- [9] Chaturani, P. and Upadhya, V. S., “On Micropolar Fluid Model for Blood Flow through Narrow Tubes,” Biorheology, Vol. 16, pp. 419428 (1979).
- [10] Chaturani, P. and Upadhya, V. S., “ATwo-Fluid Model for Blood Flow through Small Diameter Tubes,” Biorheology, Vol. 18, pp. 245253 (1981).
- [11] Shukla, J. B., Parihar, R. S. and Gupta, S. P., “Effects of Peripheral Layer Viscosity on Blood Flow through the Artery with Mild Stenosis,” Bull. Math. Biol., Vol. 42, pp. 797805 (1980). doi: 10.1016/S0092-8240 (80)80003-6
- [12] Blair, G. W. S. and Spanner, D. C., “An Introduction to Biorheology,” Elsevier, Amsterdam. (1974).
- [13] Maruthi Prasad, K. and Radhakrishnamacharya, G., “Flow of Herschel-Bulkley Fluid through an Inclined tube of Non-uniform Cross-section with Multiple Stenoses,” Arch. Mech., Vol. 60, No. 2, pp. 161172 (2008).
- [14] Vajravelu, K., Sreenadh, S., Devaki, P. and Prasad K. V., “Mathematical Model for a Herschel-Bulkley Fluid Flow in an Elastic Tube,” Cent. Eur. J. Phys., Vol. 9, No. 5, pp. 13571365 (2011). doi: 10.2478/s11534011-0034-3
- [15] Sankar, D. S. and Lee, U., “Two-fluid Herschel-Bulkley Model for Blood Flow in Catheterized Arteries,” J. Mech. Sci. Tech., Vol. 22, pp. 10081018 (2008). doi: 10.1007/s12206-008-0123-4
- [16] Vajravelu, K., Sreenadh, S. and RameshBabu, V., “Peristaltic Transport of a Herschel-Bulkley Fluid in an Inclined Tube,” Int. J. Non-Linear Mech., Vol. 40, No. 1, pp. 8390 (2005). doi: 10.1016/j.ijnonlinmec.2004. 07.001
- [17] Santhosh, N., Radhakrishnamacharya, G. and Chamkha, A. J., “Flow of a Jeffrey Fluid Through a Porous Medium in Narrow Tubes,” J. Por. Media., Vol. 18, No. 1, pp. 7178 (2015). doi: 10.1615/JPorMedia.v18.i1.60