REFERENCES
- [1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo. Theory And Applications of Fractional Differential Equations.204. Elsevier Science Limited, 2006.
- [2] I. Podlubny, (1999) “An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications" Math. Sci. Eng 198: 340.
- [3] J. Biazar and M. Eslami, (2011) “Differential transform method for nonlinear fractional gas dynamics equation" International Journal of Physical Sciences 6(5): 1203–1206.
- [4] A. Zulfiqar and J. Ahmad, (2021) “Comparative study of two techniques on some nonlinear problems based using conformable derivative" Nonlinear Engineering 9(1): 470–482. DOI: 10.1515/nleng-2020-0030.
- [5] M. Senol, L. Akinyemi, A. Ata, and O. S. Iyiola, (2021) “Approximate and generalized solutions of conformable type Coudrey–Dodd–Gibbon–Sawada–Kotera equation" International Journal of Modern Physics B 35(02): 2150021.
- [6] S. Ganji, D. Ganji, and S. Karimpour, (2008) “Determination of the frequency-amplitude relation for nonlinear oscillators with fractional potential using he’s energy balance method" Progress In Electromagnetics Research C 5: 21–33.
- [7] K. Srinivasa and H. Rezazadeh, (2021) “Numerical solution for the fractional-order one-dimensional telegraph equation via wavelet technique" International Journal of Nonlinear Sciences and Numerical Simulation 22(6): 767–780. DOI: 10.1515/ijnsns-2019-0300.
- [8] M. Nadeem, J.-H. He, and A. Islam, (2021) “The homotopy perturbation method for fractional differential equations: part 1 Mohand transform" International Journal of Numerical Methods for Heat and Fluid Flow 31(11): 3490–3504. DOI: 10.1108/HFF-11-2020-0703.
- [9] M.-X. Zhou, A. Ravi Kanth, K. Aruna, K. Raghavendar, H. Rezazadeh, M. Inc, and A. A. Aly, (2021) “Numerical solutions of time fractional zakharov-kuznetsov equation via natural transform decomposition method with nonsingular kernel derivatives" Journal of Function Spaces 2021: DOI: 10.1155/2021/9884027.
- [10] M. S. Hashemi, M. Inc, and A. Yusuf, (2020) “On three-dimensional variable order time fractional chaotic system with nonsingular kernel" Chaos, Solitons & Fractals 133: 109628.
- [11] H. Jafari and V. Daftardar-Gejji, (2006) “Solving a system of nonlinear fractional differential equations using Adomian decomposition" Journal of Computational and Applied Mathematics 196(2): 644–651.
- [12] C. Cattani, T. A. Sulaiman, H. M. Baskonus, and H. Bulut, (2018) “On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel’d-Sokolov systems" Optical and Quantum Electronics 50(3): DOI: 10.1007/s11082-018-1406-3.
- [13] M. Hashemi and D. Baleanu, (2016) “Numerical approximation of higher-order time-fractional telegraph equation by using a combination of a geometric approach and method of line" Journal of Computational Physics 316: 10–20. DOI: 10.1016/j.jcp.2016.04.009.
- [14] H. Aminikhah, A. R. Sheikhani, and H. Rezazadeh, (2015) “Exact solutions for the fractional differential equations by using the first integral method" Nonlinear engineering 4(1): 15–22.
- [15] H. Aminikhah, A. R. Sheikhani, and H. Rezazadeh, (2016) “Travelling wave solutions of nonlinear systems of PDEs by using the functional variable method" Boletim da Sociedade Paranaense de Matematica 34(2): 213–229. DOI: 10.5269/bspm.v34i2.25501.
- [16] H. Rezazadeh, D. Kumar, T. A. Sulaiman, and H. Bulut, (2019) “New complex hyperbolic and trigonometric solutions for the generalized conformable fractional Gardner equation" Modern Physics Letters B 33(17): DOI: 10.1142/S0217984919501963.
- [17] M. S. M. Shehata, H. Rezazadeh, E. H. M. Zahran, E. Tala-Tebue, and A. Bekir, (2019) “New Optical Soliton Solutions of the Perturbed Fokas-Lenells Equation" Communications in Theoretical Physics 71(11): 1275–1280. DOI: 10.1088/0253-6102/71/11/1275.
- [18] H. Ahmad, M. N. Alam, and M. Omri, (2021) “New computational results for a prototype of an excitable system" Results in Physics 28: DOI: 10.1016/j.rinp.2021.104666.
- [19] A. Yokus, H. Durur, D. Kaya, H. Ahmad, and T. A. Nofal, (2021) “Numerical comparison of Caputo and Conformable derivatives of time fractional Burgers-Fisher equation" Results in Physics 25: DOI: 10.1016/j.rinp.2021.104247.
- [20] G. Wang and A.-M. Wazwaz, (2022) “On the modified Gardner type equation and its time fractional form" Chaos, Solitons and Fractals 155: DOI: 10.1016/j.chaos.2021.111694.
- [21] G. Wang and A.-M. Wazwaz, (2022) “A NEW (3 + 1) -DIMENSIONAL KDV EQUATION AND MKDV EQUATION WITH THEIR CORRESPONDING FRACTIONAL FORMS" Fractals 30(4): DOI: 10.1142/S0218348X22500815.
- [22] G. Wang, (2021) “A new (3 + 1)-dimensional Schrödinger equation: derivation, soliton solutions and conservation laws" Nonlinear Dynamics 104(2): 1595–1602. DOI: 10.1007/s11071-021-06359-6.
- [23] G. Wang, (2021) “SYMMETRY ANALYSIS, ANALYTICAL SOLUTIONS and CONSERVATION LAWS of A GENERALIZED KdV-BURGERS-KURAMOTO EQUATION and ITS FRACTIONAL VERSION" Fractals 29(4): DOI: 10.1142/S0218348X21501012.
- [24] G. Wang, (2021) “A novel (3+1)-dimensional sine-Gorden and a sinh-Gorden equation: Derivation, symmetries and conservation laws" Applied Mathematics Letters 113: DOI: 10.1016/j.aml.2020.106768.
- [25] G.Wang, K. Yang, H. Gu, F. Guan, and A. Kara, (2020) “A (2+1)-dimensional sine-Gordon and sinh-Gordon equations with symmetries and kink wave solutions" Nuclear Physics B 953: DOI: 10.1016/j.nuclphysb.2020.114956.
- [26] M. T. Darvishi, M. Najafi, and A.-M. Wazwaz, (2021) “Some optical soliton solutions of space-time conformable fractional Schrödinger-type models" Physica Scripta 96(6): DOI: 10.1088/1402-4896/abf269.
- [27] M. Darvishi, M. Najafi, and A.-M. Wazwaz, (2021) “Conformable space-time fractional nonlinear (1+1)-dimensional Schrödinger-type models and their traveling wave solutions" Chaos, Solitons and Fractals 150: DOI: 10.1016/j.chaos.2021.111187.
- [28] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, (2014) “A new definition of fractional derivative" Journal of Computational and Applied Mathematics 264: 65–70. DOI: 10.1016/j.cam.2014.01.002.
- [29] T. Abdeljawad, (2015) “On conformable fractional calculus" Journal of Computational and Applied Mathematics 279: 57–66. DOI: 10.1016/j.cam.2014.10.016.
- [30] K. Hosseini, A. Bekir, and R. Ansari, (2017) “New exact solutions of the conformable time-fractional Cahn–Allen and Cahn–Hilliard equations using the modified Kudryashov method" Optik 132: 203–209. DOI: 10.1016/j.ijleo.2016.12.032.
- [31] A. Zheng, Y. Feng, andW.Wang, (2015) “The Hyers-Ulam stability of the conformable fractional differential equation" Mathematica Aeterna 5(3): 485–492.
- [32] O. S. Iyiola and E. R. Nwaeze, (2016) “Some new results on the new conformable fractional calculus with application using D’Alambert approach" Progr. Fract.Differ. Appl 2(2): 115–122.
- [33] K. Hosseini and R. Ansari, (2017) “New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method"Waves in Random and Complex Media 27(4): 628–636. DOI: 10.1080/17455030.2017.1296983.
- [34] M. Eslami and H. Rezazadeh, (2016) “The first integral method for Wu–Zhang system with conformable timefractional derivative" Calcolo 53(3): 475–485. DOI: 10.1007/s10092-015-0158-8.
- [35] A. Akbulut and M. Kaplan, (2018) “Auxiliary equation method for time-fractional differential equations with conformable derivative" Computers and Mathematics with Applications 75(3): 876–882. DOI: 10.1016/j.camwa.2017.10.016.
- [36] N. F. Britton et al. Reaction-diffusion equations and their applications to biology. Academic Press, 1986.
- [37] R. S. Cantrell and C. Cosner. Spatial ecology via reaction-diffusion equations. John Wiley & Sons, 2004.
- [38] P. Grindrod. The theory and applications of reactiondiffusion equations: patterns and waves. Clarendon Press, 1996.
- [39] J. Smoller. Shock waves and reaction—diffusion equations. 258. Springer Science & Business Media, 2012.
- [40] K. Wang and S. Liu, (2016) “A new Sumudu transform iterative method for time-fractional Cauchy reaction–diffusion equation" SpringerPlus 5(1): DOI: 10.1186/s40064-016-2426-8.
- [41] S. Kumar, (2013) “A new fractional modeling arising in engineering sciences and its analytical approximate solution" Alexandria Engineering Journal 52(4): 813–819. DOI: 10.1016/j.aej.2013.09.005.