Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Guan-Da Lai1, Chien-Ching Chiu This email address is being protected from spambots. You need JavaScript enabled to view it.1 and Yu-Ting Cheng1

1Electrical Engineering Department, Tamkang University, Tamsui, Taiwan 251, R.O.C.


 

Received: March 11, 2018
Accepted: March 16, 2018
Publication Date: December 1, 2018

Download Citation: ||https://doi.org/10.6180/jase.201812_21(4).0011  

ABSTRACT


In this paper, the ultra-wideband circle antenna array (UCAA) with beamforming techniques combining self-adaptive dynamic differential evolution (SADDE) to minimize the multi-path effect of the channel and bit error rate (BER) for multicasting in indoor ultra-wideband (UWB) communication system is proposed. The UWB impulse responses of the indoor channel for any transmitter-receiver location are computed by SBR/image techniques, inverse fast Fourier transform and Hermitian processing. By using the impulse response of multipath channel, the BER performance of binary pulse amplitude modulation (B-PAM) impulse radio (IR) UWB system with circular antenna array can be calculated. Based on the topography of the antenna and the BER formula, the array pattern synthesis problem can be reformulated into an optimization problem and solved by SADDE. The approach is not only choosing BER as the fitness function, but also practically considering the excitation amplitude and feed length of each array element. Numerical results show that using beamforming techniques, changing the number of transmitter and receiver antennas from 8 to 16 can apparently synthesize the radiation pattern of the directional UCAA to reduce the BER for multicasting system.


Keywords: UWB, BER, Self-adaptive Dynamic Differential Evolution, Circular Antenna Array, SBR/image


REFERENCES


  1.  [1] Hu, Z., J. Sun, J. Shao, and X. Zhang (2010) Filter-free Optically Switchable and Tunable Ultrawideband Monocycle Generation Based on Wavelength Conversion and Fiber Dispersion, IEEE Photonics Technology Letters 22(1), 42–44. doi: 10.1109/LPT.2009.2035710
  2. [2] Colak, S., T. F. Wong, and A. H. Serbest (2007) UWB Dipole Array with Equally Spaced Elements of Different Lengths, IEEE International Conference on Ultra-Wideband, Singapore, 789–793. doi: 10.1109/ ICUWB.2007.4381051
  3. [3] Malik, W. Q., D. J. Edwards, and C. J. Stevens (2006) Angular-spectral Antenna Effects in Ultra-wideband Communications Links, IEE Proceedings Communications 153(1), 99. doi: 10.1049/ip-com:20050048
  4. [4] Funk, E. E., and C. H. Lee (1996) Free-space Power Combining and Beam Steering of Ultra-wideband Radiation Using an Array of Laser-triggered Antennas, IEEE Transactions on Microwave Theory Techniques 44, 2039–2044. doi: 10.1109/22.543960
  5. [5] Yazdandoost, K. Y., and R. Kohno (2004) Ultra Wideband Antenna, IEEE Communication Magazine 42(6), 29–32. doi: 10.1109/MCOM.2004.1304230
  6. [6] Ghavami, M. (2002) Wideband Smart Antenna Theory Using Rectangular Array Structures, IEEE Trans. Signal Processing 50(9), 21432151. doi: 10.1109/TSP. 2002.801891
  7. [7] Rothna, P., B. W. Ku, K. S. Kim, and Y. S. Cho (2015) Receive Beamforming Techniques for an LTE-based Mobile Relay Station with a Uniform Linear Array, IEEE Transactions on Vehicular Technology 64(7), 32993304.
  8. [8] Chen, C. H., C. C. Chiu, and C. L. Liu (2007) Novel Directional Radiation Pattern by Genetic Algorithms in Indoor Wireless Local Loop, Wireless Personal Communications 42(4), 575586. doi: 10.1007/s11277- 006-9212-9
  9. [9] Ho, M. H., S. H. Liao, and C. C. Chiu (2010) A Novel Smart UWB Antenna Array Design by PSO, Progress in Electromagnetic Research C 15, 103115. doi: 10.2528/PIERC10051106
  10. [10] Chen, E., and M. Tao (2017) ADMM-based Fast Algorithm for Multi-group Multicast Beamforming in Large-scale Wireless Systems, IEEE Transactions on Communications 65(6), 26852698. doi: 10.1109/ TCOMM.2017. 2679708
  11. [11] Zhou, L., L. Zheng, X. Wang, W. Jiang, and W. Luo (2017) Coordinated Multicell Multicast Beamforming Based on Manifold Optimization, IEEE Communications Letters 21(7), 16731676. doi: 10.1109/LCOMM. 2017. 2693374
  12. [12] Liu, B., Y. Cheng, and Q. Zhou (2016) Robust Ranktwo Beamforming for Multicell Multigroup Multicast, IET Commun. 10(3), 283291. doi: 10.1049/iet-com. 2015.0655
  13. [13] Koyuncu, E., C. Remling, X. Liu, and H. Jafarkhani (2017) Outage-optimized Multicast Beamforming with Distributed Limited Feedback, IEEE Transactions on Wireless Communications 16(4), 283–291. doi: 10.1049/ iet-com. 2015.0655
  14. [14] Ram, G., D. MandaI, R. Kar, and S. P. Ghoshal (2014) Synthesis of Circular Antenna Arrays with Improved Radiation Patterns Using DE Algorithm, IEEE International Conference on Communication and Signal Processing, 11781182. doi: 10.1049/iet-com.2015. 0655 
  15. [15] Manisha, K., and B. Ravinder (2015) Design of Microstrip Patch Antenna for Ultra Wideband Applications, International Journal of Recent Advances in Science & Engineering 1(1).
  16. [16] Talom, F. T., B. Uguen, L. Rudant, J. Keignart, J. F. Pintos, and P. Chambelin (2006) IEEE International Conference on Ultra-Wideband, Waltham, MA, USA, 669673. doi: 10.1109/ICU.2006.281628
  17. [17] Li, Z. X., and Y. Q. Jin (2001) Numerical Simulation of Bistatic Scattering from Fractal Rough Surface in the Finite Element Method, Science in China (Series E) 44, 1218. doi: 10.1007/BF02916720
  18. [18] Chen, S. H., and S. K. Jeng (1995) An SBR/image Approach for Indoor Radio Propagation in a Corridor, IEICE Trans. Electron. E78-C, 10581062.
  19. [19] Chen, S. H., and S. K. Jeng (1996) SBR/image Approach for Indoor Radio Propagation in Tunnels with and without Traffic, IEEE Trans. Veh. Technol. 45, 570578.
  20. [20] Oppermann, I., M. Hamalainen, and J. Iinatti (2004) UWB Theory and Applications, in Wiley, New York.
  21. [21] Kamen, E. W., and B. S. Heck (2000) Fundamentals of Signals and Systems Using the Web and MATLAB, in Upper Saddle River, Prentice Hall.
  22. [22] Homier, E. A., and R. A. Scholtz (2002) Rapid Acquisition of Ultra-wideband Signals in the Dense Multipath Channel, IEEE Conference on Ultra Wideband Systems and Technologies, 105–109. doi: 10. 1109/ UWBST.2002.1006329
  23. [23] Gargin, D. J. (2004) A Fast and Reliable Acquisition Scheme for Detecting Ultra Wide-band Impulse Radio Signals in the Presence of Multi-path and Multiple Access Interference, International Workshop on Ultra Wideband Systems 106–110. doi: 10.1109/UWBST. 2004.1320945
  24. [24] Liu, C. L., C. C. Chiu, S. H. Liao, and Y. S. Chen (2009) Impact of Metallic Furniture on UWB Channel Statistical Characteristics, Tamkang Journal of Science and Engineering 12(3), 271–278.
  25. [25] Brest, J., S. Greiner, B. Boskovic, M. Mernik, and V. Zumer (2006) Self-adapting Control Parameters in Differential Evolution: Comparative Study on Numerical Benchmark Problems, IEEE Transactions on Evolutionary Computation 10(6), 646657. doi: 10.1109/ TEVC.2006.872133
  26. [26] Chiu, C. C., C. H. Chen, Y. T. Cheng, Y. L. Lee, and Y. K. Chou (2018) Beamforming Techniques at Both Transmitter and Receiver for Indoor Wireless Communication, Journal of Applied Science and Engineering 21(3), 407412.
  27. [27] Chien, W., C. C. Chiu, Y. T. Cheng, S. H. Liao, and H. S. Yen (2017) Multi-objective Optimization for UWB Antenna Array by APSO Algorithm, Telecommunication System 64(4), 649660. doi: 10.1007/s11235-016-0197-8
  28. [28] Liao, C. H, P. Hsu, and D. C. Chang (2011) Energy Patterns of UWB Antenna Arrays with Scan Capability, IEEE Transactions on Antennas and Propagation 59(4), 11401147. doi: 10.1109/TAP.2011.2109352