Long Jiang1 , Yuanfang Cheng This email address is being protected from spambots. You need JavaScript enabled to view it.1 , Zhongying Han1 , Qingchao Li1 , Qi Gao1 , Chuanliang Yan1 and Jincheng Zhang2

1School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P.R. China
2SINOPEC Research Institute of Petroleum Engineering, Beijing, 100728, P.R. China


Received: April 23, 2018
Accepted: July 11, 2018
Publication Date: December 1, 2018

Download Citation: ||https://doi.org/10.6180/jase.201812_21(4).0004  


Frost heaving plays an important role in improving the internal structure and mechanical behavior of rock mass, but little effort has been devoted to addressing this concern. In this paper, a series of pore structure, uniaxial compression experiments and mesoscopic numerical analyses were conducted to explore the frost heaving mechanisms and mechanical behaviors of rock mass. In these tests, the compactness, P-wave velocity, compressive strength, elastic modulus and brittleness of frozen sandstone increased significantly; and the permeability and permeability coefficient decreased by several orders of magnitude with temperature dropping. The experimental results indicate that cryogenic freezing can significantly improve the internal structure and strength characteristics of sandstone. In reservoir simulation, it may be instructive for forming complex fracture networks, which helps to provide more channels for oil and gas seepage and migration, thus improving the fracturing performance. In addition, the meso-damage constitutive model were successfully integrated into Abaqus to simulate the damage evolution of rock mass, which has quite promising future for solving the trans-scale progressive failure of rock mass. The study provides a basic reference for the design and maintenance of cold region engineering and cryogenic reservoir stimulation.

Keywords: Rock Mass, Low Temperature, Frost Heaving, Pore Structure, Mechanical Behavior, Mesoscopic Numerical Simulation


  1.  [1] Aoki, K., K. Hibiya, and T. Yoshida (1990) Storage of Refrigerated Liquefied Gases in Rock Caverns: Characteristics of Rock under Very Low Temperatures, Tunnelling and Underground Space Technology 5(4), 319 325. doi: 10.1016/0886-7798(90)90126-5
  2. [2] Yang, P., J. M. Ke, J. G. Wang, Y. K. Chow, and F. B. Zhu (2006) Numerical Simulation of Frost Heave with Coupled Water Freezing, Temperature and Stress Fields in Tunnel Excavation, Computers and Geotechnics 33(6), 330340. doi: 10.1016/j.compgeo.2006.07.006
  3. [3] Orakoglu, M. E., J. K. Liu, and E. Tutumluer (2016) Frost Depth Prediction for Seasonal Freezing Area in Eastern Turkey, Cold Regions Science and Technology 124, 118126. doi: 10.1016/j.coldregions.2015.12.012
  4. [4] Cheng, Y. F., L. Jiang, H. D. Wang, U. Ansari, Z. Y. Han, and J. P. Ding (2017) Experimental Study on Pore Structure and Mechanical Properties of Stratified Coal, International Journal of Geomechanics 17(12), 04017116. doi: 10.1061/(ASCE)GM.1943-5622.000 1022
  5. [5] Xu, G. M. and Q. S. Liu (2005) Analysis of Mechanism of Rock Failure due to Freeze-thaw Cycling and Mechanical Testing Study on Frozen-thawed Rocks, Chinese Journal of Rock Mechanics and Engineering 24(17), 30773082. (Chinese)
  6. [6] Li, Y. P. and Z. Y. Wang (2011) Uniaxial Compressive Mechanical Properties of Rock at Low Temperature, Journal of University of Science and Technology Beijing 33(6), 672675. (Chinese)
  7. [7] Kang. Y. S., Q. S. Liu, and S. B. Huang (2013) A Fully Coupled Thermo-hydro-mechanical Model for Rock Mass under Freezing/thawing Condition, Cold Regions Science and Technology 95, 1926. doi: 10. 1016/j.coldregions.2013.08.002
  8. [8] Ghobadi, M. H. and R. Babazadeh (2015) Experimental Studies on the Effects of Cyclic Freezing-thawing, Salt Crystallization, and Thermal Shock on the Physical and Mechanical Characteristics of Selected Sandstones, Rock Mechanics and Rock Engineering 48(3), 10011016. doi: 10.1007/s00603-014-0609-6
  9. [9] Du, Y., M. W. Xie, Y. J. Jiang, B. Li, and S. Chicas (2017) “Experimental Rock Stability Assessment Using the Frozen-thawing Test, Rock Mechanics and Rock Engineering 50(4), 10491053. doi: 10.1007/ s00603-016-1138-2
  10. [10] Selvadurai, A. P. S.,J. Hu, and I. Konuk (1999) Computational Modelling of Frost Heave Induced Soil-pipeline Interaction: I. Modelling of Frost Heave, Cold Regions Science and Technology 29(3), 215228. doi: 10.1016/ S0165-232X(99)00028-2
  11. [11] Zhang, Y. and R. L. Michalowskin (2015) Thermalhydro-mechanical Analysis of Frost Heave and Thaw Settlement, Journal of Geotechnical and Geoenvironmental Engineering 141(7), 04015027. doi: 10.1061/ (ASCE)GT.19 43-5606.0001305
  12. [12] Kurz, D., M. Alfaro, and J. Graham (2017) Thermal Conductivities of Frozen and Unfrozen Soils at Three Project Sites in Northern Manitoba, Cold Regions Science and Technology 140, 3038. doi: 10.1016/j. coldregions.2017.04.007
  13. [13] Gao, G. Y., Q. S. Chen, Q. S. Zhang, and G. Q. Chen (2012) Analytical Elasto-plastic Solution for Stress and Plastic Zone of Surrounding Rock in Cold Region Tunnels, Cold Regions Science and Technology 72, 50–57. doi: 10. 1016/j.coldregions.2014.08.001
  14. [14] Zhang, X. W., Y. Y. Lu, J. R. Tang, Z. Zhou, and Y. Liao (2017) Experimental Study on Fracture Initiation and Propagation in Shale using Supercritical Carbon Dioxide Fracturing, Fuel 190, 370378. doi: 10.1016/ j.fuel.2016.10.120
  15. [15] Chen, T. C., M. R. Yeung, and N. Morin (2004) Effect of Water Saturation on Deterioration of Welded Tuff due to Freeze-thaw Action, Cold Regions Science and Technology 38(2), 127136. doi: 10.1016/j.coldregions. 2003.10.001
  16. [16] Inada, Y. and K. Yokota (1984) Some Studies of Low Temperature Rock Strength, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 21(3), 145153. doi: 10.1016/0148-9062 (84)91532-8
  17. [17] Dwivedi, R. D., A. K. Soni, and P. K. Goel (2000) Fracture Toughness of Rocks under Sub-zero Temperature Conditions, International Journal of Rock Mechanics and Mining Sciences 37(8), 12671275. doi: 10.1016/S1365-1609(00)00051-4
  18. [18] Yamabe, T. and K. M. Neaupane (2001) Determination of Some Thermo-mechanical Properties of Sirahama Sandstone under Sub-zero Temperature Condition, International Journal of Rock Mechanics and Mining Sciences 38(7), 10291034. doi: 10.1016/S1365-1609 (01)00067-3
  19. [19] Park, C., J. H. Synn, H. S. Shin, D. S. Cheon, H. D. Lim, and S. W. Jeon (2004) An Experimental Study on the Thermal Characteristics Rock at Low Temperature, International Journal of Rock Mechanics and Mining Sciences 41(3), 367368. doi: 10.1016/j.ijrmms. 2003.12.084
  20. [20] Wang, W. F., P. Liu, L. Zheng, X. G. Zhou, and S. Jiang (2014) Natural Gas Reserves and Production Prediction of Ordos Basin, Natural Gas Geoscience 25(9), 14831489. (Chinese)
  21. [21] Wang, D. F., H. Yang, and J. H. Fu (2005) Expanding Strategy of Natural Gas Exploration and Development in Ordos Basin, Natural Gas Industry 25(4), 14. (Chinese)
  22. [22] Zhao, J. Z., J. H. Fu, J. L. Yao, X. S. Liu, H. E. Wang, Q. Cao, X. M. Wang, Y. P. Ma, and Y. F. Fan (2012) “Quasi-continuous Accumulation Model of Large Tight Sandstone Gas Field Ordos Basin, Acta Petrolei Sinica 33(S1), 3752. (Chinese)
  23. [23] Bieniawski, Z. T. and M. J. Bernede (1979) International Society for Rock Mechanics Commission on Standardization of Laboratory and Field Tests: Suggested Methods for Determining the Uniaxial Compressive Strength and Deformability of Rock Materials, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 16(2), 138– 140. doi: 10.1016/0148-9062(79)90262-6
  24. [24] Zhu, W. C., J. Liu, C. A. Tang, X. D. Zhao, and B. H. Brady (2005) Simulation of Progressive Fracturing Processes around Underground Excavations under Biaxial Compression, Tunnelling and Underground Space Technology 20(3), 231–247. doi: 10.1016/j.tust.2004. 08.008
  25. [25] Zhu, W. C. and C. A. Tang (2006) Numerical Simulation of Brazilian Disk Rock Failure under Static and Dynamic Loading, International Journal of Rock Mechanics and Mining Sciences 43(2), 236–252. doi: 10. 1016/j.ijrmms.2005.06.008
  26. [26] Wang, Q. Y., W. C. Zhu, T. Xu, L. L. Niu, and J. Wei (2016) Numerical Simulation of Rock Creep Behavior with a Damage-based Constitutive Law, International Journal of Geomechanics 17(1), 04016044. doi: 10. 1061/(ASCE)GM.1943-5622.0000707
  27. [27] Li, G., C. A. Tang, and Z. Z. Liang (2017) Development of a Parallel FE Simulator for Modeling the Whole Trans-scale Failure Process of Rock from Meso-to Engineering-scale, Computers & Geosciences 98, 73–86. doi: 10.1016/j.cageo.2016.08.014
  28. [28] AadnØy, B. S. and R. Looyeh (2011) Petroleum Rock Mechanics: Drilling Operations and Well Design, 1st ed., Gulf Professional Publishing, Oxford, 100104.
  29. [29] Chen, D. C., Y. Yao, G. Fu, H. X. Meng, and S. X. Xie (2016) A New Model for Predicting Liquid Loading in Deviated Gas Wells, Journal of Natural Gas Science and Engineering 34, 178184. doi: 10.1016/j.jngse. 2016.06.063
  30. [30] Jiang, L., Y. F. Cheng, Z. Y. Han, Q. Gao, C. L. Yan, H. D. Wang, and L. P. Fu (2018) Effect of Liquid Nitrogen Cooling on the Permeability and Mechanical Characteristics of Anisotropic Shale, Journal of Petroleum Exploration and Production Technology 1–14. doi: 10.1007/s13202-018-0509-5
  31. [31] Xia, Y. J., L. C. Li, C. A. Tang, C. Y. Bao, A. S. Li, and B. Huang (2017) Experiment and Numerical Research on Failure Characteristic and Brittleness Index for Reservoir Sandstone, Chinese Journal of Rock Mechanics and Engineering 36(1), 1128. (Chinese)