Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Chao Xiao1, Jinxin Ouyang This email address is being protected from spambots. You need JavaScript enabled to view it.1, Xiaofu Xiong1, Getu Ma1 and Di Zheng1

1State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P.R. China


 

Received: March 6, 2017
Accepted: September 11, 2018
Publication Date: December 1, 2018

Download Citation: ||https://doi.org/10.6180/jase.201812_21(4).0010  

ABSTRACT


As the voltage source converter (VSC) based high voltage direct current (HVDC) system has advantages of high stability and controllability, it becomes the main developing direction of the HVDC system. Dynamic control characteristic of VSC-HVDC system differ a lot from those of conventional AC and DC system. The VSC-HVDC exports various short-circuit current to AC grid during grid fault, which may lead to inaccurate computation of the apparent impedance and malfunction of the distance relay. Few research efforts have been made to investigate the impacts of VSC-HVDC system on the distance protection of AC transmission lines. This paper analyzes the detailed impact mechanism of the VSC-HVDC system on the distance protection operation characteristics of the interconnected AC system and provides a reference for the relay protection configuration of the AC/DC interconnected power system. Based on the control strategy of VSC-HVDC system, the magnitude and phase features of the short-circuit current contributed from VSC-HVDC are analyzed. The variation of measured impedance in the presence of VSC-HVDC system is investigated. Then, the impact factors of VSCHVDC on distance protection are proposed. The validity of the study are verified by PSCAD/EMTDC simulations.


Keywords: High Voltage Direct Current (HVDC), Distance Protection, Voltage Source Converter, Short-circuit Current, AC/DC Interconnected System


REFERENCES


  1.  [1] Flourentzou, N., V. G. Agelidis, and G. D. Demetriades (2009) VSC-based HVDC Power Transmission Systems: an Overview, IEEE Trans Power Electron 24(3), 592602. doi: 10.1109/TPEL.2008.2008441
  2. [2] Wang, W. Y., A. Beddard, M. Barnes, and O. Marjanovic (2014) Analysis of Active Power Control for VSC–HVDC, IEEE Trans Power Del 29(4), 1978 1988. doi: 10.1109/TPWRD.2014.2322498
  3. [3] Shen, H. M., S. F. Huang, and B. Fei (2015) Effect Analysis of AC/DC Interconnected Network on Distance Protection Performance and Countermeaures, Automation of Electric Power Systems 39(11), 5863. doi: 10.7500/AEPS20140529008
  4. [4] Huang, S. F., H. M. Shen, B. Fei, and O. Li (2015) Effect of Commutation Failure on the Distance Protection and the Countermeasures, IET Gen Transm. Distrib 9(9), 838844. doi: 10.1049/iet-gtd.2014.0472
  5. [5] Zhang, J. K., J. L. Suonan, F. M. He, X. H. Li, N. B. Wang, and Y. H. Ma (2013) Performance Analysis of Distance Protection Based on Industrial Frequency Variation Applied to AC-DC Hybrid Power Grid, Automation of Electric Power Systems 37(4), 98103. doi: 10.7500/AEPS201204061
  6. [6] Shao, Z., and B. Y. Wang (2006) Analysis on Influence of HVDC Commutation Failure on AC Relay Protection, High Voltage Engineering 32(9), 4245. doi: 10. 3969/j.issn.1003-6520.2006.09.011
  7. [7] Dong, Y., Z. Kang, and Y. T. Liu (2014) Coordinated Optimization for Controlling Short Circuit Current and Multi-infeed DC Interaction, Journal of Modern Power Systems and Clean Energy 2(4), 374384. doi: 10.1007/s40565-014-0081-z
  8. [8] Zhang, P., G. Wang, and H. F. Li (2012) Performance of Distance Protection for Transmission Lines in an HVDC/AC Interconnected Power System, Automation of Electric Power Systems 36(6), 5662. doi: 10. 3969/j.issn.1000-1026.2012.06.010
  9. [9] Jin, X. F., G. B. Song, H. Y. Xu, M. B. Ran, D. H. Wang, and H. Q. He (2014) A Novel Pilot Protection for VSC-HVDC Transmission Lines Using Modulus Model Identification, Automation of Electric Power Systems 38(10), 100106. doi: 10.7500/AEPS2013 01163
  10. [10] Feng, Y. D., T. Wang, Y. Lu, N. N. Wang, T. Yuan, and Y. Chen (2015) Valve Protection Design of Modular Multilevel Converter for VSC-HVDC, Automation of Electric Power Systems 39(11), 6468. doi: 10.7500/ AEPS20141228004
  11. [11] Xu, F., Z. Xu, and C. Fu (2012) A Control and Protection Scheme of Multi-Terminal DC Power System for DC Line Fault, Automation of Electric Power Systems 36(6), 7478. doi: 10.3969/j.issn.1000-1026.2012.06. 013
  12. [12] Khederza, M., and A. Ghorbani (2012) Impact of VSC-based Multiline FACTS Controllers on Distance Protection of Transmission Lines, IEEE Trans Power Deliv 27(1), 3239. doi: 10.1109/TPWRD.2011. 2168428
  13. [13] He, L., C. L. Chen, A. Pitto, and D. Cirio (2014) Distance Protection of AC Grid with HVDC Connected Offshore Wind Generators, IEEE Trans Power Deliv 29(2), 493501. doi: 10.1109/TPWRD.2013.2271761
  14. [14] Hooshyar, A., M. A. Azzouz, and E. F. EI-Saadany (2015) Distance Protection of Lines Emanating from Full-scale Converter-interfaced Renewable Energy Power Plants-Part I: Problem Statement, IEEE Trans Power Deliv 30(4), 17701780. doi: 10.1109/TPWRD. 2014.2369479
  15. [15] Liu, Y., and Z. Chen (2013) A Flexible Power Control Method of VSC-HVDC Link for the Enhancement of Effective Short-circuit Ratio in a Hybrid Multi-infeed HVDC System, IEEE Trans Power Syst 28(2), 1568 1581. doi: 10.1109/TPWRS.2012.2222057
  16. [16] Li, X. Y., Q. Zeng, Y. H. Wang, and Y. M. Zhang (2016) Control Strategies of Voltage Source Converter Based Direct Current Transmission System, High Voltage Engineering 42(10), pp. 30253037. doi: 10.13336/ j.1003-650.hve.2016096001
  17. [17] Kong, X. P., Z. Zhang, X. G. Yin, F. Wang, and M. H. He (2013) Study on Fault Current Characteristics and Fault Analysis Methods of Power Grid with Inverter Interfaced Distributed Generation, Proceeding of the CSEE 33(34), 6574. doi: 10.13334/j.0258-8013.pcsee. 2013.34.012
  18. [18] Li, H. F., P. Zhang, G. Wang, G. L. Zhu, M. Y. Zhao, H.Y. Zhou, and J. Yu (2009) Performance of Directional Protection Based on Variation of Power-frequencey Components in HVDC/AC Interconnected System: Part One DC-system Impedance of Power-frequency Component Variation, Automation of Electric Power Systems 33(9), 4146. doi: 10.3321/j.issn:1000- 1026.2009.09.009
  19. [19] Egea-Alvarez, A., S. Fekriasl, F. Hassan, and O. GomisBellmunt (2015) Advanced Vector Control for Voltage Source Converters Connected to Weak Grids, IEEE Trans Power Syst 30(6), 30723081. doi: 10.1109/ TPWRS.2014.2384596