Journal of Applied Science and Engineering

Published by Tamkang University Press


Impact Factor



Endang Tri WahyuniThis email address is being protected from spambots. You need JavaScript enabled to view it., Iqbal Yusuf Ibrahim, Novianti Dwi Lestari, and Adhitasari Suratman

Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia



Received: August 18, 2023
Accepted: January 4, 2024
Publication Date: March 1, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||  

In this study, the Fenton process modified with dicarboxylic acid as a chelating agent for reducing Pb (II) ions at neutral pH has been studied systematically. The Fenton process was carried out by interacting Fe2+ and H2O2 ions (Fenton’s reagent) with Pb (II) ions in water using a batch technique. The parameters studied in the Fenton process are the effect of the concentration of oxalic acid and succinic acid, reaction time, and the effect of pH on Pb (II) ion oxidation effectiveness. In addition, the ability of oxalic acid and succinic acid to increase the effectiveness of Pb (II) ion oxidation was compared. The results showed that the addition of oxalic acid and succinic acid in the Fenton process could enhance the oxidation of Pb (II) ions at pH 7, in which the ability of succinic acid was higher than that of oxalic acid. The oxidation of 30 mg/L Pb (II) ion in 20 mL solution reached the optimum effectiveness at 82.13% and 97.06% in the presence of oxalic and succinic acid, respectively. This effectiveness can be achieved using 0.05 M dicarboxylic acid concentration at pH 7 and 60 minutes. Furthermore, the Pb (II) ion oxidation produced PbO2 solid and follows the first-order reaction kinetics model.


Keywords: Fenton, Chelation, Neutral pH, Oxidation, Pb (II)

  1. [1] O. B. Akpor, (2014) “Heavy Metal Pollutants in Wastewater Effluents: Sources, Effects and Remediation" Advances in Bioscience and Bioengineering 2(4): 37. DOI: 10.11648/
  2. [2] A. Kumar, A. Kumar, M. Cabral-Pinto, A. K. Chaturvedi, A. A. Shabnam, G. Subrahmanyam, R. Mondal, D. K. Gupta, S. K. Malyan, S. S. Kumar, S. A. Khan, and K. K. Yadav, (2020) “Lead toxicity: Health hazards, influence on food Chain, and sustainable remediation approaches" International Journal of Environmental Research and Public Health 17(7): DOI: 10.3390/ijerph17072179.
  3. [3] M. E. Argun and S. Dursun, (2008) “A new approach to modification of natural adsorbent for heavy metal adsorption" Bioresource Technology 99(7): 2516–2527. DOI: 10.1016/j.biortech.2007.04.037.
  4. [4] A. L. Wani, A. Ara, and J. A. Usmani, (2015) “Lead toxicity: A review" Interdisciplinary Toxicology 8(2): 55–64. DOI: 10.1515/intox-2015-0009.
  5. [5] A. E. Charkiewicz and J. R. Backstrand, (2020) “Lead toxicity and pollution in Poland" International Journal of Environmental Research and Public Health 17(12): DOI: 10.3390/ijerph17124385.
  6. [6] I. R. Chowdhury, S. Chowdhury, M. A. J. Mazumder, and A. Al-Ahmed, (2022) “Removal of lead ions (Pb2+) from water and wastewater: a review on the low-cost adsorbents" Applied Water Science 12(8): DOI: 10.1007/s13201-022-01703-6.
  7. [7] E. Zhang, J. Wu, G. Wang, B. Zhang, and Y. Xie, (2016) “Efficient Fenton oxidation of Congo red dye by magnetic MgFe2O4 nanorods" Journal of Nanoscience and Nanotechnology 16(5): 4727–4732. DOI: 10.1166/jnn.2016.12627.
  8. [8] M. Tariq, M. Muhammad, J. Khan, A. Raziq, M. K. Uddin, A. Niaz, S. S. Ahmed, and A. Rahim, (2020) “Removal of Rhodamine B dye from aqueous solutions using photo-Fenton processes and novel Ni-Cu@MWCNTs photocatalyst" Journal of Molecular Liquids 312: 113399. DOI: 10.1016/j.molliq.2020.113399.
  9. [9] E. T. Wahyuni, D. Siswanta, E. S. Kunarti, D. Supraba, and S. Budiraharjo, (2019) “Removal of Pb(II) ions in the aqueous solution by photo-Fenton method" Global Nest Journal 21(2): 180–186. DOI: 10.30955/gnj.002936.
  10. [10] S. S. Saric-Bosanac, A. K. Clark, V. Nguyen, A. Pan, F. Y. Chang, C. S. Li, and R. K. Sivamani, (2019) “Quantification of ultraviolet (UV) radiation in the shade and in direct sunlight" Dermatology Online Journal 25(7): 0–6. DOI: 10.5070/d3257044801.
  11. [11] M. Muruganandham, R. P. Suri, S. Jafari, M. Sillanpää, G. J. Lee, J. J. Wu, and M. Swaminathan, (2014) “Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment" International Journal of Photoenergy 2014: DOI: 10.1155/2014/821674.
  12. [12] F. Z. Yehia, M. H. Helal, O. Ali, A. M. Elfadly, A. H. Mady, and A. A. Roshdy, (2013) “Catalytic degradation of phenol using different chelating agent at near neutral pH in modified-fenton process" Egyptian Journal of Chemistry 56(3): 199–212. DOI: 10.21608/ejchem.2013.1108.
  13. [13] H. Khorsandi, A. Mohammadi, F. Kariminejad, M. Haghighi, S. Karimzadeh, J. Khorsandi, and A. A. Aghapour, (2016) “Optimizing linear alkyl benzene sulfonate removal using Fenton oxidation process in Taguchi Method" Journal of Water Chemistry and Technology 38(5): 266–272. DOI: 10.3103/S1063455X16050040.
  14. [14] U. J. Ahile, R. A. Wuana, A. U. Itodo, R. Sha’Ato, and R. F. Dantas, (2020) “A review on the use of chelating agents as an alternative to promote photo-Fenton at neutral pH: Current trends, knowledge gap and future studies" Science of the Total Environment 710: 134872. DOI: 10.1016/j.scitotenv.2019.134872.
  15. [15] Y. Pan, H. Guo, M. Zhou, Y. Zhang, Y. Tian, and W. Wang, (2019) “EDTA enhanced removal of sulfamethazine by pre-magnetized Fe0 without oxidant addition" Chemical Engineering Journal 372(February): 905–916. DOI: 10.1016/j.cej.2019.04.211.
  16. [16] N. Kishimoto, T. Kitamura, M. Kato, and H. Otsu, (2013) “Influence of Chelating Agents on Fenton-Type Reaction Using Ferrous Ion and Hypochlorous Acid" Journal of Water and Environment Technology 11(1): 21–32. DOI: 10.2965/jwet.2013.21.
  17. [17] R. Harrison and D. Laxen. Lead pollution, causes and control. 28. 4. Champan and Hall, 1981, 313. DOI: 10.1016/0143-1471(82)90149-0.
  18. [18] X. Xue, K. Hanna, C. Despas, F. Wu, and N. Deng, (2009) “Effect of chelating agent on the oxidation rate of PCP in the magnetite/H2O2 system at neutral pH" Journal of Molecular Catalysis A: Chemical 311(1-2): 29–35. DOI: 10.1016/j.molcata.2009.06.016.
  19. [19] A. Naldoni, A. Schiboula, C. L. Bianchi, and D. H. Bremner, (2011) “Mineralisation of surfactants using ultrasound and the advanced fenton process" Water, Air, and Soil Pollution 215(1-4): 487–495. DOI: 10.1007/s11270-010-0493-y.
  20. [20] A. Verma, R. Kore, D. R. Corbin, and M. B. Shiflett, (2019) “Metal Recovery Using Oxalate Chemistry: A Technical Review" Industrial and Engineering Chemistry Research 58(34): 15381–15393. DOI: 10.1021/acs.iecr.9b02598.
  21. [21] C. Kocks, J. Görtz, A. Holtz, M. Gausmann, and A. Jupke, (2020) “Electrochemical Crystallization Concept for Succinic Acid Reduces Waste Salt Production" Chemie-Ingenieur-Technik 92(3): 221–228. DOI: 10.1002/cite.201900088.
  22. [22] A. Jariyanorasade and S. Junyapoon, (2018) “Factors affecting the degradation of linear alkylbenzene sulfonate by TiO2 assisted photocatalysis and its kinetics" EnvironmentAsia 11(1): 45–60. DOI: 10.14456/ea.2018.4.
  23. [23] Y. H. Huang, Y. J. Huang, H. C. Tsai, and H. T. Chen, (2010) “Degradation of phenol using low concentration of ferric ions by the photo-Fenton process" Journal of the Taiwan Institute of Chemical Engineers 41: 699–704. DOI: 10.1016/j.jtice.2010.01.012.



60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.