Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Pham Anh Tuan and Nguyen Manh LinhThis email address is being protected from spambots. You need JavaScript enabled to view it.

Hanoi University of Science and Technology, Hanoi, Vietnam


 

 

Received: November 19, 2023
Accepted: December 25, 2023
Publication Date: March 1, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202412_27(12).0009  


Controlling the motion of mobile robots, especially those equipped with Mecanum wheels is challenging due to the existence of disturbances and model uncertainties. In this paper, instead of trying to build a precise model for control design, the model-free control which replaces all the unknown complex mathematical parts with an ultra-local model is chosen. Then, an iPDSMC controller that combines the classical iPD and a double power rate sliding mode controller is proposed to improve the control system performance. The proposed strategy guarantees that even with a low bandwidth extended state observer used to continuously update the unknown parts of the plant, the tracking performance is maintained. The effectiveness of the proposed strategy is verified by both theoretical analysis and numerical simulations.


Keywords: Omnidirectional mobile robot; Model-free control; Ultra-local model; Extended-state observer; Sliding mode control


  1. [1] K. Jayabalan, Sangeetha, B. Tanneru, H. Prasad, and V. Mukkoti, (2017) “A Mecanum Wheel-Based Robot Platform for Warehouse Automation" International Journal of Mechanical Engineering and Technology 8: 181–189.
  2. [2] Y. Shi, A. A. Hayat, S. Vinu, and M. R. Elara, (2021) “WaspL: Design of a Reconfigurable Logistic Robot for Hospital Settings": arXiv: 2107.03002 [cs.RO].
  3. [3] B. Clemons, I. Ferdyan, and K. Anderson, (2022) “The Development of E-Butler Hotel Service Robot" Engineering, Mathematics and Computer Science (EMACS) Journal 4: 67–72. DOI: 10.21512/emacsjournal.v4i2.8119.
  4. [4] R. Galati, G. Mantriota, and G. Reina, (2022) “Adaptive heading correction for an industrial heavy-duty omnidirectional robot" Scientific Reports 12: DOI: 10.1038/s41598-022-24270-x.
  5. [5] A. Ma’arif, N. Raharja, G. Supangkat, F. Arofiati, R. Sekhar, and D. Rijalusalam, (2021) “PID-based with Odometry for Trajectory Tracking Control on Four-wheel Omnidirectional Covid-19 Aromatherapy Robot" Emerging Science Journal 5: 157–181. DOI: 10.28991/esj2021-SPER-13.
  6. [6] N. Hong Thai, T. Ly, and L. Dzung, (2022) “Trajectory tracking control for mecanum wheel mobile robot by timevarying parameter PID controller" Bulletin of Electrical Engineering and Informatics 11: 1902–1910. DOI: 10.11591/eei.v11i4.3712.
  7. [7] P. Wu, K. Wang, J. Zhang, and Q. Zhang, (2017) “Optimal Design for PID Controller Based on DE Algorithm in Omnidirectional Mobile Robot" MATEC Web of Conferences 95: 08014. DOI: 10.1051/matecconf/20179508014.
  8. [8] S. Morales, J. Magallanes, C. Delgado, and R. Canahuire. “LQR Trajectory Tracking Control of an Omnidirectional Wheeled Mobile Robot”. In: 2018, 1–5. DOI: 10.1109/CCRA.2018.8588146.
  9. [9] T. Zhang and X. Zhang, (2023) “Distributed Model Predictive Control with Particle Swarm Optimizer for Collision-Free Trajectory Tracking of MWMR Formation" Actuators 12: 127. DOI: 10.3390/act12030127.
  10. [10] C. Wang, X. Liu, X. Yang, F. Hu, A. Jiang, and C. Yang, (2018) “Trajectory Tracking of an Omni-Directional Wheeled Mobile Robot Using a Model Predictive Control Strategy" Applied Sciences 8: 231. DOI: 10.3390/app8020231.
  11. [11] D. Wang, W. Wei, Y. Yeboah, Y. Li, and Y. Gao, (2020) “A Robust Model Predictive Control Strategy for Trajectory Tracking of Omni-directional Mobile Robots" Journal of Intelligent & Robotic Systems 98: DOI: 10.1007/s10846-019-01083-1.
  12. [12] I. Moreno, E. Celaya, and L. Ros, (2021) “Model Predictive Control for a Mecanum-wheeled Robot Navigating among Obstacles" IFAC-PapersOnLine 54: 119–125. DOI: 10.1016/j.ifacol.2021.08.533.
  13. [13] Z. Islam, S. Sahoo, M. Saad, U. Tople, and A. Khandare. “Robust Backstepping Controller for an Omniwheeled Mobile Robot with Uncertainties and External Disturbances”. In: 2021, 35–42. DOI: 10.1007/978-981-15-3639-7-5.
  14. [14] L.-C. Lin and H.-Y. Shih, (2013) “Modeling and Adaptive Control of an Omni-Mecanum-Wheeled Robot" Intelligent Control and Automation 04: 166–179. DOI: 10.4236/ica.2013.42021.
  15. [15] Z. Islam, S. Chiddarwar, and S. Sahoo. “Design of Robust Backstepping Controller for Four-Wheeled Mecanum Mobile Robot”. In: 2021, 1125–1134. DOI: 10.1007/978-981-16-0550-5_107.
  16. [16] Z. Yuan, Y. Tian, Y. Yin, S. Wang, J. Liu, and L. Wu, (2020) “Trajectory Tracking Control of a Four Mecanum Wheeled Mobile Platform: an Extended State ObserverBased Sliding Mode Approach" IET Control Theory & Applications 14: DOI: 10.1049/iet-cta.2018.6127.
  17. [17] V. Alakshendra and S. Chiddarwar, (2017) “Adaptive robust control of Mecanum-wheeled mobile robot with uncertainties" Nonlinear Dynamics 87: DOI: 10.1007/s11071-016-3179-1.
  18. [18] Z. Sun, H. Xie, J. Zheng, Z. Man, and D. He, (2020) “Path-Following Control of Mecanum-Wheels Omnidirectional Mobile Robots Using Nonsingular Terminal Sliding Mode" Mechanical Systems and Signal Processing: DOI: 10.1016/j.ymssp.2020.107128.
  19. [19] P. Bozek, Y. Karavaev, A. Ardentov, and K. Yefremov, (2020) “Neural network control of a wheeled mobile robot based on optimal trajectories" International Journal of Advanced Robotic Systems 17: DOI: 10.1177/1729881420916077.
  20. [20] M. Fliess and C. Join. “Intelligent PID controllers”. In: 2008, 326–331. DOI: 10.1109/MED.2008.4601995.
  21. [21] M. Fliess and C. Join, (2013) “Model-free control" International Journal of Control 86: DOI: 10.1080/00207179.2013.810345.
  22. [22] W. L. Kaihui Zhao and G. Huang, (2022) “Model-Free Sliding Mode Control for PMSM Drive System Based on Ultra-Local Model" Energy Engineering 119(2): 767–780. DOI: 10.32604/EE.2021.018617.
  23. [23] Y. Zhang, J. Jin, and L. Huang, (2020) “Model-Free Predictive Current Control of PMSM Drives Based on Extended State Observer Using Ultralocal Model" IEEE Transactions on Industrial Electronics PP: 1–1. DOI: 10.1109/TIE.2020.2970660.
  24. [24] T. Li and X. Liu, (2021) “Model-Free Non-Cascade Integral Sliding Mode Control of Permanent Magnet Synchronous Motor Drive with a Fast Reaching Law" Symmetry 13: 1680. DOI: 10.3390/sym13091680.
  25. [25] J. Han, (2009) “From PID to Active Disturbance Rejection Control" Industrial Electronics, IEEE Transactions on 56: 900–906. DOI: 10.1109/TIE.2008.2011621.
  26. [26] Z. Gao. “Scaling and Parameterization Based Controller Tuning”. In: 6. 2003, 4989–4996. DOI: 10.1109/ACC.2003.1242516.
  27. [27] C.-C. Tsai and H.-L. Wu. “Nonsingular terminal sliding control using fuzzy wavelet networks for Mecanum wheeled omnidirectional vehicles”. In: International Conference on Fuzzy Systems. 2010, 1–6. DOI: 10.1109/FUZZY.2010.5584223.


Latest Articles