- [1] B. Pourghebleh and N. J. Navimipour, (2017) “Data aggregation mechanisms in the Internet of things: A systematic review of the literature and recommendations for future research" Journal of Network and Computer Applications 97: 23–34. DOI: 10.1016/j.jnca.2017.08.006.
- [2] R. Singh, A. Mehbodniya, J. L. Webber, P. Dadheech, G. Pavithra, M. S. Alzaidi, and R. Akwafo, (2022) “Analysis of network slicing for management of 5G networks using machine learning techniques" Wireless Communications and Mobile Computing 2022: DOI: 10.1155/2022/9169568.
- [3] S. J. Bhat and S. KV, (2022) “A localization and deployment model for wireless sensor networks using arithmetic optimization algorithm" Peer-to-Peer Networking and Applications 15: 1473–1485. DOI: 10.1007/s12083-022-01302-x.
- [4] B. Pourghebleh and V. Hayyolalam, (2020) “A comprehensive and systematic review of the load balancing mechanisms in the Internet of Things" Cluster Computing 23: 641–661. DOI: 10.1007/s10586-019-02950-0.
- [5] P. He, N. Almasifar, A. Mehbodniya, D. Javaheri, and J. L. Webber, (2022) “Towards green smart cities using Internet of Things and optimization algorithms: A systematic and bibliometric review" Sustainable Computing: Informatics and Systems 36: 100822. DOI: 10.1016/j.suscom.2022.100822.
- [6] S. Palanisamy, S. Sankar, R. Somula, and G. G. Deverajan, (2021) “Communication trust and energy-aware routing protocol for WSN using DS theory" International Journal of Grid and High Performance Computing (IJGHPC) 13: 24–36.
- [7] J. Chen, D. Zhang, J. Zhang, T. Zhang, H. Zhu, and J. Qiu, (2020) “New approach of energy-efficient hierarchical clustering based on neighbor rotation for RWSN" IEEE Access 8: 123123–123134. DOI: 10.1109/ACCESS.2020.3007478.
- [8] B. Pourghebleh, N. Hekmati, Z. Davoudnia, and M. Sadeghi, (2022) “A roadmap towards energy-efficient data fusion methods in the Internet of Things" Concurrency and Computation: Practice and Experience 34: e6959. DOI: 10.1002/cpe.6959.
- [9] S. S. Sefati and S. Halunga, (2022) “A hybrid service selection and composition for cloud computing using the adaptive penalty function in genetic and artificial bee colony algorithm" Sensors 22: 4873. DOI: 10.3390/s22134873.
- [10] S. Aghakhani, A. Larijani, F. Sadeghi, D. Martín, and A. A. Shahrakht, (2023) “A Novel Hybrid Artificial Bee Colony-Based Deep Convolutional Neural Network to Improve the Detection Performance of Backscatter Communication Systems" Electronics 12: 2263. DOI: 10.3390/electronics12102263.
- [11] B. Pourghebleh, A. A. Anvigh, A. R. Ramtin, and B. Mohammadi, (2021) “The importance of nature-inspired meta-heuristic algorithms for solving virtual machine consolidation problem in cloud environments" Cluster Computing 24: 2673–2696. DOI: 10.1007/s10586-021-03294-4.
- [12] S. Mahmoudinazlou, A. Alizadeh, J. Noble, and S. Eslamdoust, (2023) “An improved hybrid ICA-SA metaheuristic for order acceptance and scheduling with time windows and sequence-dependent setup times" Neural Computing and Applications: 1–19. DOI: 10.1007/s00521-023-09030-w.
- [13] T. Gera, J. Singh, A. Mehbodniya, J. L. Webber, M. Shabaz, and D. Thakur, (2021) “Dominant feature selection and machine learning-based hybrid approach to analyze android ransomware" Security and Communication Networks 2021: 1–22. DOI: 10.1155/2021/7035233.
- [14] S. N. H. Bukhari, J. Webber, and A. Mehbodniya, (2022) “Decision tree based ensemble machine learning model for the prediction of Zika virus T-cell epitopes as potential vaccine candidates" Scientific Reports 12: 7810. DOI: 10.1038/s41598-022-11731-6.
- [15] J. Webber, A. Mehbodniya, Y. Hou, K. Yano, and T. Kumagai. “Study on idle slot availability prediction for WLAN using a probabilistic neural network”. In: IEEE, 2017, 1–6. DOI: 10.23919/APCC.2017.8304030.
- [16] C. Han and X. Fu, (2023) “Challenge and opportunity: deep learning-based stock price prediction by using Bidirectional LSTM model" Frontiers in Business, Economics and Management 8: 51–54.
- [17] B. M. Jafari, M. Zhao, and A. Jafari, (2022) “Rumi: An intelligent agent enhancing learning management systems using machine learning techniques" Journal of Software Engineering and Applications 15: 325–343.
- [18] M. Sabet and H. Naji, (2016) “An energy efficient multilevel route-aware clustering algorithm for wireless sensor networks: A self-organized approach" Computers & Electrical Engineering 56: 399–417. DOI: 10.1016/j.compeleceng.2016.07.009.
- [19] R. Yarinezhad and M. Sabaei, (2021) “An optimal cluster-based routing algorithm for lifetime maximization of Internet of Things" Journal of Parallel and Distributed Computing 156: 7–24. DOI: 10.1016/j.jpdc.2021.05.005.
- [20] Y. U. Xiu-Wu, Y. U. Hao, L. Yong, and X. Ren-rong, (2020) “A clustering routing algorithm based on wolf pack algorithm for heterogeneous wireless sensor networks" Computer Networks 167: 106994. DOI: 10.1016/j.comnet.2019.106994.
- [21] A. Ghosal, S. Halder, and S. K. Das, (2020) “Distributed on-demand clustering algorithm for lifetime optimization in wireless sensor networks" Journal of Parallel and Distributed Computing 141: 129–142. DOI: 10.1016/j.jpdc.2020.03.014.
- [22] M. Mohseni, F. Amirghafouri, and B. Pourghebleh, (2023) “CEDAR: A cluster-based energy-aware data aggregation routing protocol in the internet of things using capuchin search algorithm and fuzzy logic" Peer-toPeer Networking and Applications 16: 189–209. DOI: 10.1007/s12083-022-01388-3.
- [23] H. A. Shayanfar, O. Abedinia, N. Amjady, and S. Rajaei. “Improved ABC and fuzzy controller based on consonant FACTS devices”. In: The Steering Committee of The World Congress in Computer Science, Computer . . ., 2016, 60.
- [24] I. Ahmadian, O. Abedinia, and N. Ghadimi, (2014) “Fuzzy stochastic long-term model with consideration of uncertainties for deployment of distributed energy resources using interactive honey bee mating optimization" Frontiers in Energy 8: 412–425. DOI: 10.1007/s11708- 014-0315-9.
- [25] O. Abedinia and N. Amjady, (2014) “Optimal Design Of Fuzzy Power System Stabilizer In Multi-Machine Environment By Harmony Search Algorithm" Journal of Modeling in Engineering 12: 1–15.
- [26] O. Abedinia, M. S. Naderi, and A. Ghasemi. “Robust LFC in deregulated environment: Fuzzy PID using HBMO”. In: IEEE, 2011, 1–4. DOI: 10.1109/EEEIC.2011.5874843.
- [27] M. Nasir, A. Sadollah, Y. H. Choi, and J. H. Kim, (2020) “A comprehensive review on water cycle algorithm and its applications" Neural Computing and Applications 32: 17433–17488. DOI: 10.1007/s00521-020-05112-1.