Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Xufen HuaThis email address is being protected from spambots. You need JavaScript enabled to view it. and Yong Zhao

Wuxi Institute of Technology; Wuxi Jiangsu 214000 China


 

Received: July 11, 2023
Accepted: November 5, 2023
Publication Date: December 6, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202409_27(9).0003  


One radio transmitter’s most crucial component is the oscillator. Designers have long tried to make the oscillation phase less noticeable. On the other hand, in addition to operating at high frequencies, expanding the oscillators’ swinging range is crucial. Therefore, a variety of approaches have been suggested in this study to boost swing. Removing the transistor of the sequence in cross-linked structures is one of the most crucial ways to boost the swinging. In this investigation, single-output swinging increased by 1.43 V with a 1.2 V power supply due to feedback bias control points in the bias point and transformer feedback communicated in numerous studies. The main goal of this work was to develop a high-level VCO for WLAN applications using CMOS 0.18 technology with a power consumption of 1.92 mW and phase noise at 1MHZ frequency offset of at least -122.5 dBc/HZ. In this study, a frequency range of 0.67GHz to 1.67GHz in binary code was defined. This oscillator has an output range of up to 2 GHz by adjusting the voltage. There are various ways to manage the bias point without using a transistor sequence to enhance the range of swing in LC oscillators. For these approaches, a bias-coupled transistor model can be used to forecast the employment of bias circuits to modulate the output limit switchers.


Keywords: Radio receiver transmitter; transistor trail; WLAN; regulated oscillator; VCO


  1. [1] M. S. Sial, Q. Fu, and T. V. Brugni, (2022) “Allocation of interline power flow controller based congestion management in deregulated power system" Advances in Engineering and Intelligence Systems 1: DOI: 10.22034/AEIS.2022.148478.
  2. [2] O. Faruqe, M. Elma, N. H. Antu, and M. T. Amin. “A 4.94 5.35 GHz, 3.93 mW, 4-bit Digitally Controlled Bandpass Filter for High Speed WLAN Applications”. In: IEEE, 2020, 1–6. DOI: 10.1109/ICCIT51783.2020.9392679.
  3. [3] P. Li, T. Tian, B. Wu, and T. Ye, (2021) “A novel self-biased phase-locked loop scheme for WLAN applications" Electronics 10: 2077. DOI: 10.3390/electronics10172077.
  4. [4] T. Tian, P. Li, H.-q. Huang, and B. Wu, (2021) “A quadrature LO-generator using an external single-ended clock receiver for dual-band WLAN applications" IEICE Electronics Express 18: 20210130. DOI: 10.1587/elex.18.20210130.
  5. [5] S. Balamurali, G. Mangraviti, C.-H. Tsai, P. Wambacq, and J. Craninckx, (2022) “Design and analysis of 55–63- GHz fundamental quad-core VCO with NMOS-only stacked oscillator in 28-nm CMOS" IEEE Journal of Solid-State Circuits 57: 1997–2010. DOI: 10.1109/JSSC.2022.3165654.
  6. [6] L. F. Rahman, M. Marufuzzaman, L. Alam, L. M. Sidek, and M. B. I. Reaz, (2020) “A low power and low ripple CMOS high voltage generator for RFID transponder EEPROM" Plos one 15: e0225408. DOI: 10.1371/journal.pone.0225408.
  7. [7] M. A. Elizondo, R. Fan, H. Kirkham, M. Ghosal, F. Wilches-Bernal, D. Schoenwald, and J. Lian, (2018) “Interarea oscillation damping control using high-voltage dc transmission: A survey" IEEE Transactions on Power Systems 33: 6915–6923. DOI: 10.1109/TPWRS.2018.2832227.
  8. [8] I. U. Khan, D. Balodi, and N. K. Misra, (2022) “Low power LC-quadrature VCO with superior phase noise performance in 0.13 µm RF-CMOS process for modern WLAN application" Circuits, Systems, and Signal Processing 41: 2522–2540. DOI: 10.1007/s00034-021-01921-4.
  9. [9] F. Sadikoglu, S. Bakhtiari, and E. Babaei. “Design of Quasi-Resonant Flyback Converter Integrated by Fuzzy Controller”. In: Springer, 2022, 31–39. DOI: 10.1007/978-3-031-25252-5_10.
  10. [10] H. Zhao, H. Wang, N. Xu, X. Zhao, and S. Sharaf, (2023) “Fuzzy approximation-based optimal consensus control for nonlinear multiagent systems via adaptive dynamic programming" Neurocomputing 553: 126529. DOI: 10.1016/j.neucom.2023.126529.
  11. [11] Y.-H. Chang and J.-F. Liang, (2022) “CMOS voltagecontrolled oscillator using inductive dual-balance source degeneration" Electronics Letters 58: 946–948. DOI: 10.1049/ell2.12657.
  12. [12] N. Ghaderi, M. Zhang, D. Yu, and L. Lorenzelli. “A New Low Power Ring Voltage-Controlled Oscillator with a Wide Tuning Range”. In: IEEE, 2021, 293–296. DOI: 10.1109/iEECON51072.2021.9440360.
  13. [13] H. Zhang, Q. Zou, Y. Ju, C. Song, and D. Chen, (2022) “Distance-based support vector machine to predict DNA N6-methyladenine modification" Current Bioinformatics 17: 473–482. DOI: 10.2174/1574893617666220404145517.
  14. [14] F. Cheng, B. Niu, N. Xu, X. Zhao, and A. M. Ahmad, (2023) “Fault detection and performance recovery design with deferred actuator replacement via a low-computation method" IEEE Transactions on Automation Science and Engineering: DOI: 10.1109/TASE.2023.3300723.
  15. [15] C. Cao, J. Wang, D. Kwok, F. Cui, Z. Zhang, D. Zhao, M. J. Li, and Q. Zou, (2022) “webTWAS: a resource for disease candidate susceptibility genes identified by transcriptome-wide association study" Nucleic acids research 50: D1123–D1130. DOI: 10.1093/nar/gkab957.
  16. [16] M. K. SINGH, P. Singh, N. Kadayinti, D. Das, and M. Sakare, (2023) “Frequency Range Enhancement in Differential Ring VCO while Maintaining Phase Noise Performance":
  17. [17] S. Das and S. Sen. “A Multi-phase LC-Ring-Based Voltage Controlled Oscillator”. In: Springer, 2022, 41–51. DOI: 10.1007/978-981-16-6940-8_4.
  18. [18] S. Yue, B. Niu, H. Wang, L. Zhang, and A. M. Ahmad, (2023) “Hierarchical sliding mode-based adaptive fuzzy control for uncertain switched under-actuated nonlinear systems with input saturation and dead-zone" Robotic Intelligence and Automation 43: 523–536. DOI: 10.1108/RIA-04-2023-0056.
  19. [19] M. Trik, A. M. N. G. Molk, F. Ghasemi, and P. Pouryeganeh, (2022) “A hybrid selection strategy based on traffic analysis for improving performance in networks on chip" Journal of Sensors 2022:
  20. [20] S. Yan, Z. Gu, J. H. Park, and X. Xie, (2023) “A delaykernel-dependent approach to saturated control of linear systems with mixed delays" Automatica 152: 110984. DOI: 10.1016/j.automatica.2023.110984.
  21. [21] T. Wang, L. Zhang, N. Xu, and K. H. Alharbi, (2023) “Adaptive critic learning for approximate optimal eventtriggered tracking control of nonlinear systems with prescribed performances" International Journal of Control: 1–15. DOI: 10.1080/00207179.2023.2250880.
  22. [22] M. Trik, H. Akhavan, A. M. Bidgoli, A. M. N. G. Molk, H. Vashani, and S. P. Mozaffari, (2023) “A new adaptive selection strategy for reducing latency in networks on chip" Integration 89: 9–24. DOI: 10.1016/j.vlsi.2022.11.004.
  23. [23] Z. Wang, Z. Jin, Z. Yang, W. Zhao, and M. Trik, (2023) “Increasing efficiency for routing in internet of things using binary gray wolf optimization and fuzzy logic" Journal of King Saud University-Computer and Information Sciences 35: 101732. DOI: 10.1016/j.jksuci.2023.101732.
  24. [24] M. Trick and B. Boukani, (2014) “Placement algorithms and logic on logic (LOL) 3D integration" Journal of mathematics and computer science 8: 128–136.
  25. [25] A. Abdi, H. S. Kim, and H.-K. Cha, (2018) “A highvoltage generation charge-pump IC using input voltage modulated regulation for neural implant devices" IEEE Transactions on Circuits and Systems II: Express Briefs 66: 342–346. DOI: 10.1109/TCSII.2018.2852360.
  26. [26] J. Sun, Y. Zhang, and M. Trik, (2022) “PBPHS: a profilebased predictive handover strategy for 5G networks" Cybernetics and Systems: 1–22. DOI: 10.1080/01969722.2022.2129375.
  27. [27] M. Samiei, A. Hassani, S. Sarspy, I. E. Komari, M. Trik, and F. Hassanpour, (2023) “Classification of skin cancer stages using a AHP fuzzy technique within the context of big data healthcare" Journal of Cancer Research and Clinical Oncology: 1–15. DOI: 10.1007/s00432-023-04815-x.
  28. [28] A. M. A. Khan, T. Islam, M. W. Absar, M. R. Sarker, and M. S. Islam. “Design of a High Voltage Closed Loop Charge Pumping System with a self-regulation mechanism”. In: IEEE, 2019, 1–6. DOI: 10.1109/ICASERT.2019.8934525.
  29. [29] M. H. Lafta, (2022) “Path Scheduling and Target Trajectory Optimization in UAVs based on Dragonfly and Firefly Algorithm" Advances in Engineering and Intelligence Systems 1: DOI: 10.22034/AEIS.2022.356205.1037.
  30. [30] Y. Cao, N. Xu, H. Wang, X. Zhao, and A. M. Ahmad, (2023) “Neural networks-based adaptive tracking control for full-state constrained switched nonlinear systems with periodic disturbances and actuator saturation" International Journal of Systems Science 54: 2689–2704. DOI: 10.1080/00207721.2023.2241959.