Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Nasmi Herlina Sari1This email address is being protected from spambots. You need JavaScript enabled to view it., Edi Syafri2, Suteja1, Widya Fatriasari3, and Azizatul Karimah3

1Mechanical Engineering Department, Faculty of Engineering, University of Mataram, Mataram, West Nusa Tenggara, Indonesia

2Department of Agricultural Technology, Politeknik Pertanian Negeri Payakumbuh, West Sumatera, Indonesia

3Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN) Bogor, Indonesia


 

 

Received: June 2, 2023
Accepted: October 3, 2023
Publication Date: December 16, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202409_27(9).0015  


As a potential replacement for materials derived from fossil fuels, novel micro cellulose fibers based biocomposites have emerged as one of the most promising materials for producing sustainable composites. Cellulose fibers from Paederia Foetida stem was bleached with NaClO2, then isolated for 2 hours in an alkaline solution of 5% NaOH to produce micro cellulose fibers. Using casting techniques, different biocomposites were successfully prepared by combining 5% (weight) micro cellulose fibers (CMFPFs) into different matrices, namely Colocasia Esculenta starch (PCE) and poly lactic acid (PLA). Biocomposites were characterized using water absorption tests, X-ray diffraction, FTIR, morphology, Tensile strength, and Thermogravimetric Analysis (TGA). The results showed that incorporating 5% CMFPFs into the PLA (sample BPA/5CM) improved tensile strength, elastic modulus of 54.4 ± 4.38 MPa and 6196 ± 142.87 MPa, respectively, and good water resistance, whereas incorporating 5% CMFPFs into PCE (sample BCE/5CM) produced a small impact on the increase in thermal properties, and tensile strength, and elastic modulus, but a significant impact on the observed water absorption, crystallinity index, and elongation properties. FESEM results on the BCE/5CM biocomposite and BPA/5CM biocomposite revealed even fiber dispersion and strong adhesion in the matrix. These findings point to ecofriendly microfibre-based biocomposites as ideal candidates for natural materials suitable for food packaging materials.


Keywords: Colocasia Esculenta Starch; biocomposites; mechanical properties; Paederia foetida Cellulose microfibers; water resistence


  1. [1] I. Benito-González, M. del Mar Ortiz-Gimeno, A. López-Rubio, A. Martínez-Abad, A. GarridoFernández, and M. Martínez-Sanz, (2022) “Sustainable starch biocomposite films fully-based on white rice (Oryza sativa) agroindustrial by-products" Food and Bioproducts Processing 136: 47–58. DOI: 10.1016/j.fbp.2022.09.008.
  2. [2] M. J. Fabra, M. Martínez-Sanz, L. G. GómezMascaraque, R. Gavara, and A. López-Rubio, (2018) “Structural and physicochemical characterization of thermoplastic corn starch films containing microalgae" Carbohydrate polymers 186: 184–191. DOI: 10.1016/j.carbpol.2018.01.039.
  3. [3] R. Ilyas, S. Sapuan, M. Ishak, and E. Zainudin, (2018) “Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites" Carbohydrate polymers 202: 186–202. DOI: 10.1016/j.carbpol.2018.09.002.
  4. [4] T. S. M. Kumar, N. Rajini, K. O. Reddy, A. V. Rajulu, S. Siengchin, and N. Ayrilmis, (2018) “All-cellulose composite films with cellulose matrix and Napier grass cellulose fibril fillers" International journal of biological macromolecules 112: 1310–1315. DOI: 10.1016/j.ijbiomac.2018.01.167.
  5. [5] J. Tarique, S. Sapuan, A. Khalina, S. Sherwani, J. Yusuf, and R. Ilyas, (2021) “Recent developments in sustainable arrowroot (Maranta arundinacea Linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: A review" Journal of Materials Research and Technology 13: 1191–1219. DOI: 10.1016/j.jmrt.2021.05.047.
  6. [6] T. Li, Y. Zhang, Y. Jin, L. Bao, L. Dong, Y. Zheng, J. Xia, L. Jiang, Y. Kang, and J. Wang, (2023) “Thermoplastic and biodegradable sugarcane lignin-based biocomposites prepared via a wholly solvent-free method" Journal of Cleaner Production 386: 135834. DOI: 10.1016/j.jclepro.2022.135834.
  7. [7] J. S. Binoj, M. Jaafar, B. B. Mansingh, and A. K. Pulikkal, (2023) “Comprehensive investigation of Areca catechu tree peduncle biofiber reinforced biocomposites: influence of fiber loading and surface modification" Biomass Conversion and Biorefinery: 1–13. DOI: 10.1007/s13399-023-04182-0.
  8. [8] A. K. Giri and P. C. Mishra, (2023) “Optimization of different process parameters for the removal efficiency of fluoride from aqueous medium by a novel bio-composite using Box-Behnken design" Journal of Environmental Chemical Engineering 11(1): 109232. DOI: 10.1016/j.jece.2022.109232.
  9. [9] M. Anwar, M. McConnell, and A. E.-D. Bekhit, (2021) “New freeze-thaw method for improved extraction of watersoluble non-starch polysaccharide from taro (Colocasia esculenta): Optimization and comprehensive characterization of physico-chemical and structural properties" Food Chemistry 349: 129210. DOI: 10.1016/j.foodchem.2021.129210.
  10. [10] X. Yu, Y. Zhang, L. Ran, W. Lu, E. Zhang, and F. Xiong, (2022) “Accumulation and physicochemical properties of starch in relation to eating quality in different parts of taro (Colocasia esculenta) corm" International Journal of Biological Macromolecules 194: 924–932. DOI: 10. 1016/j.ijbiomac.2021.11.147.
  11. [11] R. Syafiq, R. Ilyas, L. Rajeshkumar, F. M. ALOqla, Y. Nukman, M. Y. M. Zuhri, A. Atiqah, S. Thiagamani, S. P. Bangar, C. Barile, et al., (2023) “Corn<? index value=" Corn"?> starch<? index value=" Starch"?> nanocomposite<? index value=" Nanocomposite"?> films<? index value=" Films"?> reinforced with nanocellulose<? index value=" Nanocellulose"?>" Physical Sciences Reviews (0): DOI: 10.1515/psr-2022-0011.
  12. [12] K. O. Falade and C. A. Okafor, (2013) “Physicochemical properties of five cocoyam (Colocasia esculenta and Xanthosoma sagittifolium) starches" Food Hydrocolloids 30(1): 173–181. DOI: 10.1016/j.foodhyd.2012.05.006.
  13. [13] M. L. Sanyang, S. Sapuan, M. Jawaid, M. Ishak, and J. Sahari, (2016) “Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: A review" Renewable and Sustainable Energy Reviews 54: 533–549. DOI: 10.1016/j.rser.2015.10.037.
  14. [14] H. Khalili, A. Bahloul, E.-H. Ablouh, H. Sehaqui, Z. Kassab, F.-Z. S. A. Hassani, and M. El Achaby, (2023) “Starch biocomposites based on cellulose microfibers and nanocrystals extracted from alfa fibers (Stipa tenacissima)" International Journal of Biological Macromolecules 226: 345–356. DOI: 10.1016/j.ijbiomac.2022.11.313.
  15. [15] C. Banerjee, D. Datta, S. Mohanty, S. Samanta, and G. Halder, (2023) “Development of rice starch/recycled polypropylene biocomposites with jute waste nanofiberbased filler" Sustainable Chemistry and Pharmacy 33: 101101. DOI: 10.1016/j.scp.2023.101101.
  16. [16] P. Nooun, N. Chueangchayaphan, N. Ummarat, and W. Chueangchayaphan, (2023) “Fabrication and properties of natural rubber/rice starch/activated carbon biocomposite-based packing foam sheets and their application to shelf life extension of ‘Hom Thong’banana" Industrial Crops and Products 195: 116409. DOI: 10.1016/j.indcrop.2023.116409.
  17. [17] M. M. Reza, H. A. Begum, and A. J. Uddin, (2023) “Potentiality of sustainable corn starch-based biocomposites reinforced with cotton filter waste of spinning mill" Heliyon 9(5): DOI: 10.1016/j.heliyon.2023.e15697.
  18. [18] L. Dai, C. Qiu, L. Xiong, and Q. Sun, (2015) “Characterisation of corn starch-based films reinforced with taro starch nanoparticles" Food chemistry 174: 82–88. DOI: 10.1016/j.foodchem.2014.11.005.
  19. [19] A. R. Mukurumbira, J. J. Mellem, and E. O. Amonsou, (2017) “Effects of amadumbe starch nanocrystals on the physicochemical properties of starch biocomposite films" Carbohydrate polymers 165: 142–148. DOI: 10.1016/ j.carbpol.2017.02.041.
  20. [20] P. C. Martins, J. M. Latorres, and V. G. Martins, (2022) “Impact of starch nanocrystals on the physicochemical, thermal and structural characteristics of starch-based films" LWT 156: 113041. DOI: 10.1016/j.lwt.2021.113041.
  21. [21] K. Hazrati, S. Sapuan, M. Zuhri, and R. Jumaidin, (2021) “Preparation and characterization of starch-based biocomposite films reinforced by Dioscorea hispida fibers" Journal of Materials Research and Technology 15: 1342–1355. DOI: 10.1016/j.jmrt.2021.09.003.
  22. [22] N. H. Sari, E. Syafri, W. Fatriasari, A. Karimah, et al., (2023) “Comprehensive Characterization Of Novel Cellulose Fiber From Paederia Foetida and Its Modification For Sustainable Composites Application" Journal of Applied Science and Engineering 26(10): 1399–1408. DOI: 10.6180/jase.202310_26(10).0005.
  23. [23] C. Macwan, (2010) “Paederia foetida Linn. As a potential medicinal plant : A Review" Journal of Pharmacy Research 3: 3135–3137.
  24. [24] D. Patel, (2017) “Paederia Foetida Linn.: A Potential Climbing Medicinal Herb in Central India" International Journal of Environmental Sciences & Natural Resources 6(5): 118–124. DOI: 10.19080/IJESNR.2017.06.555699.
  25. [25] R. A. Ilyas, N. Hamid, K. A. Ishak, M. N. F. Norrrahim, S. Thiagamani, S. Rangappa, S. Siengchin, S. Bangar, and N. M. Nurazzi. “Advanced applications of biomass nanocellulose-reinforced polymer composites”. In: Synthetic and Natural Nanofillers in Polymer Composites. Elsevier, 2023, 349–385. DOI: 10. 1016/B978-0-443-19053-7.00013-5.
  26. [26] N. H. S. et al., (2023) “A novel micro fiber cellulose from Paederia Foetida Stems: Characterization of physical, morphology, thermal and chemical properties":
  27. [27] N. H. Sari, C. I. Pruncu, S. M. Sapuan, R. A. Ilyas, A. D. Catur, S. Suteja, Y. A. Sutaryono, and G. Pullen, (2020) “The effect of water immersion and fibre content on properties of corn husk fibres reinforced thermoset polyester composite" Polymer Testing 91: 106751. DOI: 10.1016/j.polymertesting.2020.106751.
  28. [28] J. Ren, K. M. Dang, E. Pollet, and L. Avérous, (2018) “Preparation and characterization of thermoplastic potato starch/halloysite nano-biocomposites: effect of plasticizer nature and nanoclay content" Polymers 10(8): 808. DOI: 10.3390/polym10080808.
  29. [29] T. Jiang, Q. Duan, J. Zhu, H. Liu, and L. Yu, (2020) “Starch-based biodegradable materials: Challenges and opportunities" Advanced Industrial and Engineering Polymer Research 3(1): 8–18. DOI: 10.1016/j.aiepr.2019.11.003.
  30. [30] N. Herlina Sari, I. Wardana, Y. S. Irawan, and E. Siswanto, (2018) “Characterization of the chemical, physical, and mechanical properties of NaOH-treated natural cellulosic fibers from corn husks" Journal of Natural Fibers 15(4): 545–558. DOI: 10.1080/15440478.2017.1349707.
  31. [31] A. R. Muthusamy, S. M. K. Thiagamani, S. Krishnasamy, C. Muthukumar, S. M. Rangappa, and S. Siengchin, (2022) “Lignocellulosic microfibrils from Phaseolus lunatus and Vigna radiata biomass: characterization and properties" Biomass Conversion and Biorefinery: 1–9. DOI: 10.1007/s13399-022-03428-7.
  32. [32] T. Sathishkumar, P. Navaneethakrishnan, S. Shankar, and R. Rajasekar, (2014) “Mechanical properties and water absorption of short snake grass fiber reinforced isophthallic polyester composites" Fibers and Polymers 15: 1927–1934. DOI: 10.1007/s12221-014-1927-8.
  33. [33] H. Aloui, A. R. Deshmukh, C. Khomlaem, and B. S. Kim, (2021) “Novel composite films based on sodium alginate and gallnut extract with enhanced antioxidant, antimicrobial, barrier and mechanical properties" Food Hydrocolloids 113: 106508. DOI: 10.1016/j.foodhyd. 2020.106508.
  34. [34] A. Podshivalov, M. Zakharova, E. Glazacheva, and M. Uspenskaya, (2017) “Gelatin/potato starch edible biocomposite films: Correlation between morphology and physical properties" Carbohydrate Polymers 157: 1162–1172. DOI: 10.1016/j.carbpol.2016.10.079.
  35. [35] K. Hazrati, S. Sapuan, M. Zuhri, and R. Jumaidin, (2021) “Extraction and characterization of potential biodegradable materials based on Dioscorea hispida tubers" Polymers 13(4): 584. DOI: 10.3390/polym13040584.
  36. [36] H.-S. Han and K. B. Song, (2021) “Noni (Morinda citrifolia) fruit polysaccharide films containing blueberry (Vaccinium corymbosum) leaf extract as an antioxidant packaging material" Food Hydrocolloids 112: 106372. DOI: 10.1016/j.foodhyd.2020.106372.
  37. [37] S. Krishnasamy, S. M. K. Thiagamani, C. M. Kumar, R. Nagarajan, R. Shahroze, S. Siengchin, S. O. Ismail, and I. D. MP, (2019) “Recent advances in thermal properties of hybrid cellulosic fiber reinforced polymer composites" International journal of biological macromolecules 141: 1–13. DOI: 10.1016/j.ijbiomac.2019.08.231.
  38. [38] N. Jain, V. K. Singh, and S. Chauhan, (2017) “A review on mechanical and water absorption properties of polyvinyl alcohol based composites/films" Journal of the Mechanical Behavior of Materials 26(5-6): 213–222. DOI: 10.1515/jmbm-2017-0027.
  39. [39] K. L. Pickering, M. A. Efendy, and T. M. Le, (2016) “A review of recent developments in natural fibre composites and their mechanical performance" Composites Part A: Applied Science and Manufacturing 83: 98–112. DOI: 10.1016/j.compositesa.2015.08.038.
  40. [40] P. R. Fitch-Vargas, I. L. Camacho-Hernández, F. Martínez-Bustos, A. R. Islas-Rubio, K. I. CarrilloCañedo, A. Calderón-Castro, N. Jacobo-Valenzuela, A. Carrillo-López, C. I. Delgado-Nieblas, and E. Aguilar-Palazuelos, (2019) “Mechanical, physical and microstructural properties of acetylated starch-based biocomposites reinforced with acetylated sugarcane fiber" Carbohydrate polymers 219: 378–386. DOI: 10.1016/j.carbpol.2019.05.043.
  41. [41] M. Ibrahim, S. Sapuan, E. Zainudin, and M. Zuhri, (2019) “Potential of using multiscale corn husk fiber as reinforcing filler in cornstarch-based biocomposites" International journal of biological macromolecules 139: 596–604. DOI: 10.1016/j.ijbiomac.2019.08.015.
  42. [42] T. Thiruganasambanthan, R. A. Ilyas, M. N. F. Norrrahim, T. S. M. Kumar, S. Siengchin, M. S. M. Misenan, M. A. A. Farid, N. M. Nurazzi, M. R. M. Asyraf, S. Z. S. Zakaria, et al., (2022) “Emerging developments on nanocellulose as liquid crystals: a biomimetic approach" Polymers 14(8): 1546. DOI: 10.3390/polym14081546.
  43. [43] F.-K. Zeng, H. Liu, and G. Liu, (2014) “Physicochemical properties of starch extracted from Colocasia esculenta (L.) Schott (Bun-long taro) grown in Hunan, China" StarchStärke 66(1-2): 142–148. DOI: 10.1002/star.201300039.
  44. [44] A. Aydogdu, E. Kirtil, G. Sumnu, M. H. Oztop, and Y. Aydogdu, (2018) “Utilization of lentil flour as a biopolymer source for the development of edible films" Journal of Applied Polymer Science 135(23): 46356. DOI: 10.1002/app.46356.
  45. [45] A. Mukurumbira, M. Mariano, A. Dufresne, J. J. Mellem, and E. O. Amonsou, (2017) “Microstructure, thermal properties and crystallinity of amadumbe starch nanocrystals" International Journal of Biological Macromolecules 102: 241–247. DOI: 10.1016/j.ijbiomac.2017.04.030.
  46. [46] A. Edhirej, S. Sapuan, M. Jawaid, and N. I. Zahari, (2017) “Preparation and characterization of cassava bagasse reinforced thermoplastic cassava starch" Fibers and Polymers 18: 162–171. DOI: 10.1007/s12221-017-6251-7.
  47. [47] P. Cheng, Y. Peng, K. Wang, A. Le Duigou, S. Yao, and C. Chen, (2023) “Quasi-static penetration property of 3D printed woven-like ramie fiber reinforced biocomposites" Composite Structures 303: 116313. DOI: 10.1016/j.compstruct.2022.116313.
  48. [48] P. Aleksandr, Z. Mariia, G. Ekaterina, and U. Mayya, (2017) “Gelatin/potato starch edible biocomposite films: Correlation between morphology and physical properties" Carbohydrate Polymers 157: DOI: 10.1016/j.carbpol.2016.10.079.
  49. [49] R. Karthikeyan, M. K. T. Senthil, P. Harikrishnan, M. Chandrasekar, K. Senthilkumar, S. Suchart, M. A. Abeer, A. H. Mahmoud, and M. R. Sanjay, (2023) “Novel Cellulosic Natural Fibers from Abelmoschus Ficulneus Weed: Extraction and Characterization for Potential Application in Polymer Composites" Journal of Polymers and the Environment 157: DOI: 10.1007/s10924-022-02687-9.


    



 

1.6
2022CiteScore
 
 
60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.