REFERENCES
- [1] A. Poorjafar, M. Esmaeili-Falak, and H. Katebi, (2021) “Pile-soil interaction determined by laterally loaded fixed head pile group" Geomechanics and Engineering 26(1): 13–25. DOI: 10.12989/gae.2021.26.1.013..
- [2] R. Sarkhani Benemaran, (2017) “Experimental and analytical study of pile-stabilized layered slopes" Tabriz: University of Tabriz:
- [3] M. Esmaeili-Falak, H. Katebi, and A. Javadi, (2018) “Experimental study of the mechanical behavior of frozen soils-A case study of tabriz subway" Periodica Polytechnica Civil Engineering 62(1): 117–125.
- [4] M. Esmaeili-Falak. “Effect of system’s geometry on the stability of frozen wall in excavation of saturated granular soils". (phdthesis). Doctoral dissertation, University of Tabriz Tabriz, Iran, 2017.
- [5] M. Esmaeili-Falak, H. Katebi, A. Javadi, and S. Rahimi, (2017) “Experimental investigation of stress and strain characteristics of frozen sandy soils-A case study of Tabriz subway" Modares Civil Engineering journal 17(5): 13–23.
- [6] M. Esmaeili-Falak, H. Katebi, and A. Javadi, (2020) “Effect of freezing on stress–strain characteristics of granular and cohesive soils" Journal of Cold Regions Engineering 34(2): 05020001. DOI: 10.1061/(ASCE)CR.1943-5495.0000205..
- [7] P. Carrubba, (1997) “Skin friction on large-diameter piles socketed into rock" Canadian Geotechnical Journal 34(2): 230–240.
- [8] C. W. Ng, T. L. Yau, J. H. Li, and W. H. Tang, (2001) “Side resistance of large diameter bored piles socketed into decomposed rocks" Journal of geotechnical and geoenvironmental engineering 127(8): 642–657.
- [9] R. Sarkhani Benemaran, M. Esmaeili-Falak, and H. Katebi, (2020) “Physical and numerical modelling of pilestabilised saturated layered slopes" Proceedings of the Institution of Civil Engineers-Geotechnical Engineering: 1–16. DOI: 10.1680/jgeen.20.00152.
- [10] C.W. M.F. Randolph, (1978) “Analysis of deformation of vertically loaded piles" Journal of the Geotechnical Engineering Division 104: 1465–1488.
- [11] P. L. Tirant. Design guides for offshore structures: Offshore pile design. 1992.
- [12] H. A. R.K. Rowe, (1987) “A design method for drilled piers in soft rock" Canadian Geotechnical Journal 24:126–142.
- [13] F. Nejad, M. Jaksa, M. Kakhi, and B. McCabe, (2009) “Prediction of pile settlement using artificial neural networks based on standard penetration test data" Computers and Geotechnics 36: 1125–1133.
- [14] M. Shahin, H. Maier, and M. Jaksa, (2002) “Predicting settlement of shallow foundations using neural networks" Journal of Geotechnical and Geoenvironmental Engineering 128: 785–793.
- [15] M. Esmaeili-Falak, H. Katebi, M. Vadiati, and J. Adamowski, (2019) “Predicting triaxial compressive strength and Young’s modulus of frozen sand using artificial intelligence methods" Journal of Cold Regions Engineering 33: DOI: 10.1061/(ASCE )CR.1943-5495.0000188.
- [16] A. Nassr, M. Esmaeili-Falak, H. Katebi, and A. Javadi, (2018) “A new approach to modeling the behavior of frozen soils" Engineering Geology 246: 82–90. DOI: 10.1016/j.enggeo.2018.09.018.
- [17] H. Rezaei, R. Nazir, and E. Momeni, (2016) “Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study" Journal of Zhejiang University 17: 273–285.
- [18] S. Yagiz, E. Sezer, and C. Gokceoglu, (2012) “Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks" International Journal for Numerical and Analytical Methods in Geomechanics 36: 1636–1650.
- [19] E. Momeni, R. Nazir, D. Armaghani, and H. Maizir, (2015) “Application of artificial neural network for predicting shaft and tip resistances of concrete piles" Earth Sciences Research Journal 19: 85–93.
- [20] T. S. M. Khandelwal, (2007) “Soil Dynamics and Earthquake Engineering" Earth Sciences Research Journal 27: 116–125.
- [21] D. Armaghani, M. Amin, S. Yagiz, R. Faradonbeh, and R. Abdullah, (2016) “Prediction of the uniaxial compressive strength of sandstone using various modeling techniques" International Journal of Rock Mechanics and Mining Sciences 85: 174–186.
- [22] P. Samui, (2019) “Determination of friction capacity of driven pile in clay using Gaussian process regression (GPR), and minimax probability machine regression (MPMR)" Geotechnical and Geological Engineering 37: 4643–4647.
- [23] M. Pal and S. Deswal, (2010) “Modelling pile capacity using Gaussian process regression" Computers and Geotechnics 37: 942–947.
- [24] E. Momeni, M. Dowlatshahi, F. Omidinasab, H. Maizir, and D. Armaghani, (2020) “Gaussian process regression technique to estimate the pile bearing capacity" Arabian Journal for Science and Engineering 45: 8255–8267.
- [25] W. Zhang and A. Goh, (2013) “Multivariate adaptive regression splines for analysis of geotechnical engineering systems" Computers and Geotechnics 48: 82–95.
- [26] R. Benemaran and M. Esmaeili-Falak, (2020) “Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO" Computers and Concrete 26: 309–316. DOI: 10.12989/cac.2020.26.4.309.
- [27] L. Teodorescu and D. Sherwood, (2008) “High energy physics event selection with gene expression programming" Computer Physics Communications 178: 409–419.
- [28] I. Alkroosh and H. Nikraz, (2011) “Correlation of pile axial capacity and CPT data using gene expression programming" Geotechnical and Geological Engineering 29: 725–748.
- [29] A. Mollahasani, A. Alavi, and A. Gandomi, (2011) “Empirical modeling of plate load test moduli of soil via gene expression programming" Computers and Geotechnics 38: 281–286.
- [30] A. Ozbek, M. Unsal, and A. Dikec, (2013) “Estimating uniaxial compressive strength of rocks using genetic expression programming" Journal of Rock Mechanics and Geotechnical Engineering 5: 325–329.
- [31] S. Dindarloo, (2015) “Prediction of blast-induced ground vibrations via genetic programming" International Journal of Mining Science and Technology 25: 1011–1015.
- [32] D. Armaghani, R. Faradonbeh, H. Rezaei, A. Rashid, and H. Amnieh, (2018) “Settlement prediction of the rock-socketed piles through a new technique based on gene expression programming" Neural Computing and Applications 29: 1115–1125.
- [33] D. J. Armaghani, P. G. Asteris, S. A. Fatemi, M. Hasanipanah, R. Tarinejad, A. S. A. Rashid, and V. V. Huynh, (2020) “On the use of neuro-swarm system to forecast the pile settlement" Applied Sciences 10(6):1904.
- [34] D. Jahed Armaghani, R. S. N. S. B. R. Shoib, K. Faizi, A. S. A. Rashid, et al., (2017) “Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles" Neural Computing and Applications 28(2): 391–405.
- [35] M. Esmaeili-Falak and M. Hajialilue-Bonab, (2012) “Numerical studying the effects of gradient degree on slope stability analysis using limit equilibrium and finite element methods" Int J Acad Res 4(4): 216–222.
- [36] M. Esmaeili Falak, R. Sarkhani Benemaran, and R. Seifi, (2020) “Improvement of the mechanical and durability parameters of construction concrete of the Qotursuyi Spa" Concrete Research 13(2): 119–134. DOI: 10.22124/JCR.2020.14518.1395..
- [37] J. H. Friedman, (1991) “Multivariate adaptive regression splines" The annals of statistics 19(1): 1–67.
- [38] S. Sekulic and B. R. Kowalski, (1992) “MARS: a tutorial" Journal of Chemometrics 6(4): 199–216.
- [39] J. H. Friedman and C. B. Roosen. An introduction to multivariate adaptive regression splines. 1995.
- [40] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning, corrected ed. 2003.
- [41] Q.-S. Xu, M. Daszykowski, B.Walczak, F. Daeyaert, M. De Jonge, J. Heeres, L. Koymans, P. Lewi, H. Vinkers, P. Janssen, et al., (2004) “Multivariate adaptive regression splines—studies of HIV reverse transcriptase inhibitors" Chemometrics and intelligent laboratory systems 72(1): 27–34.
- [42] M.-Y. Cheng and M.-T. Cao, (2014) “Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines" Applied Soft Computing 22: 178–188.