REFERENCES
- [1] S. Sagiroglu, R. Terzi, Y. Terzi, and I. Colak. “Big Data Issues in Smart Grid Systems”. In: 5th International Conference on Renewable Energy Research and Application. 2016, 1007–1012
- [2] V. J. F. Kakeu, A. T. Boum, and C. F. Mbey, (2021) “Optimal Reliability of a Smart Grid" International Journal of Smart Grid 5(2): 74–82.
- [3] A. Daissaoui, A. Boulmakoul, L. Karim, and A. Lbath. “IoT and Big Data Analytics for Smart Buildings: A Survey”. In: The 11th International Conference on Ambient Systems, Networks and Technologies (ANT), 170.Warsaw, Poland, 2020, 161–168.
- [4] S. Azad, F. Sabrina, and S. Wasimi. “Transformation of Smart Grid using Machine Learning”. In: 29th Australasian Universities Power Engineering Conference (AUPEC). Australia, 2019, 1–6.
- [5] C. Vineetha and C. Babu, (2014) “Smart grid challenges, issues and solutions" Intelligent Green Building and Smart Grid (IGBSG), 2014 International Conference: 1–4.
- [6] F. Y. Souhe, A. T. Boum, and C. F. Mbey, (2021) “Roadmap for Smart Metering Deployment in Cameroon" International Journal of Smart Grid 5: 37–44.
- [7] C. F. Mbey, A. Boum, and L. N. Nneme, (2020)“Roadmap for the Transformation of the South Cameroon Interconnected Network (RIS) into Smart-Grid" American Journal of Energy Engineering 8(1):
- [8] T. S. Hlalele and Y. S. and. “Faults Classification and identification on smart grid: Part- A status Review”. In: 2nd International Conference on sustainable Materials Processing and Manufacturing (SMPM). 35. 2019, 601–606.
- [9] J. Hare, X. Shi, S. Gupta, and A. Bazzi, (2016) “Fault diagnostics in smart micro-grids" Sustain. Energy Rev. 1114–1124.
- [10] M. Jamil, R. Singh, and S. K. Sharma, (2015) “Fault identification in electrical power distribution system using combined discrete wavelet transform and fuzzy logic" J. Electr. Syst. Inf. Technol. 2(2): 257–267. [11] M. Jamil, S. K. Sharma, and R. Singh, (2015) “Fault detection and classification in electrical power transmission system using artificial neural network" Springer plus 4(1):
- [12] H. Liao and N. Anani, (2017) “Fault identificationbased voltage sag state estimation using artificial neural network" Energy Procedia 134: 40–47.
- [13] K. Manandhar, X. Cao, F. Hu, and Y. Liu, (2014) “Detection of Faults and Attacks Including False Data Injection Attack in Smart Grid Using Kalman Filter" IEEE Transactions On Control Of Network Systems 1(4): 370–379.
- [14] H. Qi, X.Wang, L. Tolbert, F. Li, F. Peng, P. Ning, and M. Amin, (2011) “A resilient real-time system design for a secure and reconfigurable power grid" IEEE Trans. Smart Grid 2(4): 770–781.
- [15] C. Can, W. Kuihua, W. Yutian, Q. Lujie, F. Liang, and Y. Shenquan. “Automatic Classification of Voltage Sags Based on Advanced Two-stage Feature Extraction Techniques”. In: 5th Asia Conference on Power and Electrical Engineering (ACPEE). 2020, 420–425.
- [16] Y. Amirat, Z. Oubrahim, and M. Benbouzid, (2015) “On Phasor Estimation for Voltage Sags Detection in a Smart Grid Context": 1351–1356.
- [17] H. M. Nadeem, X. Zheng, N. Tai, M. Gul, and M. Yu. “Detection and Classification of Faults in MTDC Networks”. In: IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). 2018, 311–316.
- [18] S. Beheshtaein, M. Savaghebi, J. C. Vasquez, and J. M. Guerrero. “A Hybrid Algorithm for Fault Locating in Looped Microgrids”. In: IEEE Energy Conversion Congress and Exposition (ECCE). 2016, 1–6.
- [19] J. Duan, K. Zhang, and L. Cheng, (2016) “A Novel Method of Fault Location for Single-Phase Microgrids" IEEE Trans. Smart Grid 7(2): 915–925.
- [20] Z. Jiao, H. Gong, and Y.Wang, (2016) “A D-S Evidence Theory-based Relay Protection System Hidden Failueres Detection Method in Smart Grid" IEEE Transactions on Smart Grid:
- [21] K. Nainar and F. Iov, (2021) “Three-Phase State Estimation for Distribution-Grid Analytics" Clean Technol. 3: 395–408.
- [22] J. Wang, Q. Yang, W. Sima, T. Yuan, and M. Zahn, (2011) “A Smart Online Over-Voltage Monitoring and Identification System" Energies 4: 599–615.
- [23] J. Q. James, Y. Hou, Y. S. L. Albert, and O. K. L. Victor, (2019) “Intelligent Fault Detection Scheme for Microgrids with Wavelet-based Deep Neural Networks" IEEE Transactions on Smart Grid 10(2): 1694–1703.
- [24] A. J. Wilson, D. R. Reising, R. W. Hay, R. C. Johnson, A. A. Karrar, and T. D. Loveless, (2020) “Automated Identification of Electrical Disturbance Waveforms within an Operational Smart Power Grid" IEEE Transactions on Smart Grid 11(5): 4380–4389.
- [25] P. D. Achlerkar, S. R. Samantaray, and M. S. Manikandan, (2018) “Variational Mode Decomposition and Decision Tree Based Detection and Classification of Power Quality Disturbances in Grid-Connected Distributed Generation System" IEEE Transactions on Smart Grid 9(4): 3122–3132.
- [26] A. Jalali, P. Ravikumar, and S. Sanghavi, (2013) “A Dirty Model for Multiple Sparse Regression" IEEE Transactions on Information Theory 59(12): 7947–7968.
- [27] M. H. Nadeem, X. Zheng, N. Tai, and M. Gul, (2018) “Identification and Isolation of Faults in Multi-terminal High Voltage DC Networks with Hybrid Circuit Breakers" Energies 11: 1–21.
- [28] K. Tahata, S. E. Oukaili, K. Kamei, D. Yoshida, Y. Kono, R. Yamamoto, and H. Ito, (2015) “HVDC circuit breakers For HVDC grid applications" 11th IET International Conference on AC and DC Power Transmission: 1–9.
- [29] A. Mokhberdoran, A. Carvalho, N. Silva, H. Leite, and A. Carrapatoso, (2017) “Application study of superconducting fault current limiters in meshed HVDC grids protected by fast protection relays" Electr. Power Syst. Res. 143: 292–302.
- [30] W. Javed, D. Chen, M. E. Farrag, and Y. Xu, (2019) “System Configuration, Fault Detection, Location, Isolation and Restoration: A Review on LVDC Microgrid Protections" Energies 12:
- [31] J. Han, S. H. Miao, H. R. Yin, S. Y. Guo, Z. X. Wang, F. X. Yao, and Y. J. Lin. “Deep-Adversarial-Transfer Learning Based Fault Classification of Power Lines in Smart Grid”. In: IOP Conf. Series: Earth and Environmental Science. 701. 2021.
- [32] J. D. Taft, (2017) “Fault Intelligence: Distribution Grid Fault Detection and Classification" Pacific Northwest National Laboratory: 1–38.
- [33] K. Saleh, A. Hooshyar, and E. F. E. Saadany, (2019) “Fault detection and location in Medium voltage DC microgrids using travelling-wave reflections" IET Renewable Power Generation: 1–9.
- [34] M. Dehghani, M. H. Khooban, and T. Niknam, (2016) “Fast fault detection and classification based on a combination of wavelet singular entropy theory and fuzzy logic in distribution lines in the presence of distributed generations" Electrical Power and Energy Systems 78: 455–462.
- [35] J. Hare, X. Shi, S. Gupta, and A. Bazzi, (2020) “Fault diagnostics in smart micro-grids: A survey" Renewable and Sustainable Energy Reviews 60: 1114–1124.
- [36] A. E. L. Rivas and T. Abrao, (2020) “Faults in smart grid systems: Monitoring, detection and classification" Electric Power Systems Research 189: 1–26.
- [37] Y. Bansal and R. Sodhi. “Microgrid fault detection methods: Reviews, issues and future trends”. In: IEEE Innovative Smart Grid Technologies Asia (ISGT Asia). 2018, 401 406
- [38] S. A. Jamali, A. Bahmanyar, and E. Bompard, (2017) “Fault Location Method for Distribution Networks Using Smart Meters" Measurement: 1–22.
- [39] T. S. Hlalele, Y. Sun, and Z. Wang, (2019) “Faults Classification and Identification on Smart grid: Part-A Status Review" Procedia Manufacturing 35: 601–606.
- [40] D. Sarathkumar, M. Srinivasan, A. A. Stonier, R. Samikannu, N. R. Dasari, and R. A. Raj. “A Technical Review on Classification of Various Faults in Smart Grid Systems”. In: IOP Conference Series: Materials Science and Engineering. 1055. 1. IOP Publishing. 2021, 012152.
- [41] F. C. L. Trindade,W. Freitas, and J. C. M. Vieira, (2014) “Fault Location in Distribution Systems Based on Smart Feeder Meters" IEEE Transactions on Power Delivery 29(1): 251–260.
- [42] K. Jia, Z. F. Ren, T. S. Bi, and Q. Yang, (2015) “Ground Fault Location Using the Low Voltage Side Recorded Data in Distribution Systems" IEEE Transactions on Industry Applications 51(4): 4994–5001.
- [43] H. Jiang, D. W. Gao, and Y. Zhang, (2016) “Spatial- Temporal Synchrophasor Data Characterization and Analytics in Smart Grid Fault Detection, Identification, and Impact Causal Analysis" IEEE Transactions on Smart Grid 7(5): 2525–2536.
- [44] A. S. Dobakhshari and A. M. Ranjbar, (2015) “A Novel Method for Fault Location of Transmission Lines by Wide- Area Voltage Measurements Considering Measurement Errors" IEEE Transactions on Smart Grid 6(2): 874–884.
- [45] H. Jiang and W. Gao, (2014) “Fault Detection, Identification, and Location in Smart Grid Based on Data-Driven Computational Methods" IEEE Transactions on Smart Grid 5(6): 2947–2956.
- [46] C. L. Kuo, J. L. Chen, S. J. Chen, C. C. Kao, H. T. Yau, and C. H. Lin, (2017) “Photovoltaic Energy Conversion System Fault Detection Using Fractional-Order Color Relation Classifier in Micro distribution Systems" IEEE Transactions on Smart Grid 8(3): 1163–1172.
- [47] K. Chen, J. Hu, and J. He, (2018) “Detection and Classification of Transmission Line Faults Based on Unsupervised Feature Learning and Convolutional Sparse Auto encoder" IEEE Transactions on Smart Grid 9(3): 1748– 1758.
- [48] S. Ntalampiras, (2007) “Fault Diagnosis for Smart Grids in Pragmatic Conditions" Journal of Latex Class Files 6(1):
- [49] M. H. Nadeem, T. Nengling, and Z. Xiaodong. “Multi-Terminal HVDC Fault Current Analysis During Line to Ground Fault”. In: Proc. Innovative smart grid technologies Conf. IGST. Auckland, New Zealand, 2017, 1–5.
- [50] R. Perez and C. Vasquez, (2016) “Fault Location in Distribution Systems with Distributed Generation Using Support Vector Machines and Smart Meters" IEEE Ecuador Technical Chapters Meeting (ETCM): 1–6.
- [51] R. Agrawal and D. Thukaram. “Identification of fault location in power distribution system with distributed generation using support vector machines”. In: IEEE PES Innov. Smart Grid Technol. Conf. 2013, 1–6.
- [52] G. M. Amer, A. S. Selmy, andW. A. Mohamed, (2020) “Enhanced Fault Diagnostic Technique Applied to IEEE 14-bus Smart Grid Standard" International Journal of Innovative Technology and Exploring Engineering (IJITEE) 9(4):
- [53] A. Khoshnami and I. Sadeghkhani, (2018) “Sample entropy-based fault detection for photovoltaic arrays" IET Renewable Power Generation 12(16): 1966–1976.
- [54] S. S. Balasreedharan and S. Thangavel. “An Adaptive Fault Identification Scheme For Dc Microgrid Using Event Based Classification”. In: 3rd International Conference on Advanced Computing and Communication Systems (ICACCS). Coimbatore, INDIA, 2016, 1–7.
- [55] Y. Amirat and M. Benbouzid. “A Smart Grid Voltage Sag Detector using an EEMD-based Approach”. In: 2013 International Electric Machines & Drives Conference. 2013, 1300–1304.
- [56] Y. Amirat, M. Benbouzid, T. Wang, and S. Turri. “Smart Grid Voltage Sag Detection using Instantaneous Features Extraction”. In: IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society. 2013, 7394–7399.
- [57] R. Kumar, (2011) “Assuring Voltage Stability in the Smart Grid" ISGT: 1–4.
- [58] S. S. Maaji, G. Cosma, A. Taherkhani, A. A. Alani, and T. M. McGinnity. “On-line Voltage Stability Monitoring Using an Ensemble Adaboost Classifier”. In: 4th IEEE International Conference on Information Management,1–7.
- [59] D. Nguyen, R. Barella, S. A. Wallace, X. Zhao, and X. Liang, (2015) “Smart Grid Line Event Classification Using Supervised Learning Over PMU Data Streams" Sixth International Green and Sustainable Computing Conference (IGSC): 1–8.
- [60] B. S. England and A. T. Alouani, (2020) “Real time voltage stability prediction of smart grid areas using smart Meters data and improved Thevenin estimates" Electrical Power and Energy Systems 122: 1–8.
- [61] F. G. Y. Souhe, C. F. Mbey, A. T. Boum, and P. Ele, (2021) “Forecasting of Electrical Energy Consumption of Households in a Smart Grid" International Journal of Energy Economics and Policy 11(6): 221–233.
- [62] J. T. Maita, (2019) “Simulation of Modern Distribution Systems Using Matlab and OpenDSS" FISEIEEE/ CIGRE Conference – Living the energy Transaction (FISE/CIGRE): 1–6.