Journal of Applied Science and Engineering

Published by Tamkang University Press


Impact Factor



Lucas Tamele Jr.1, Herminio Muiambo This email address is being protected from spambots. You need JavaScript enabled to view it.1, Giovanna Buonocore2, and Carlos Cumbane3

1Department of Chemistry, Faculty of Sciences, Eduardo Mondlane University, Julius Nyerere Venue 3453, Maputo, Mozambique
2Institute of Polymers, Composites and Biomaterials (IPCB) – National Research Council, Naples, Italy
3Department of Communication Routes, Mozambique Engineering Laboratory, Mozambique Avenue, Maputo, Mozambique


Received: November 11, 2021
Accepted: January 4, 2022
Publication Date: March 15, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||  


Asphalt is the most suitable material for road pavement. However, due to mechanical and environmental loads, asphalt tends to show fatigue damage and thermal cracking. To avoid or mitigate these failures, the present research proposes the use of thermoplastic polymers, High-density polyethylene (HDPE) and Linear low-density polyethylene (LLDPE), and nanoclay Dellite 43B for asphalt binder modification. The nanocomposites were prepared in a high-shear mixer using the solution intercalation method for a mixing time of 1.5 h, at 180 oC and 5000 rpm. Thermogravimetric analysis (TGA) was performed with a heating rate of 10 oC/min, from 25 to 600 oC under air and N2 atmospheres with a flow rate of 100 mL/min. The TGA data and kinetic analysis showed that the nanocomposites presented greater thermal stability than unmodified asphalt and polymer-modified asphalt binder. Hence, the initial and final decomposition temperatures were increased and the incorporation of nanoclay lead to higher activation energy, entropy, enthalpy change and Gibbs free energy values.

Keywords: Asphalt; Nanoclay Dellite 43B; Polymer modified asphalt; thermal analysis; kinetics


  1. [1] R. N. Hunter, A. Self, and J. Read. The Shell Bitumen Handbook, 5th edition. Sixth edit. London: ICE Publishing, 2003, 789. DOI: 10.1680/sbh.32200.
  2. [2] L. G. A. Farias, B. d. C. Amoni, J. B. Bastos, H. B. de Sant’Ana, J. L. Leitinho, S. d. A. Soares, and J. B. Soares, (2016) “Effects of nanoclay and nanocomposites on bitumen rheological properties" Construction and Building Materials 125: 873–883. DOI: 10.1016/j.conbuildmat.2016.08.127.
  3. [3] V. Kosma, S. Hayrapetyan, E. Diamanti, E. P. Giannelis, and A. Dhawale, (2018) “Bitumen nanocomposites with improved performance" Construction and Building Materials 160: 30–38. DOI: 10.1016/j.conbuildmat.2017.11.024.
  4. [4] M. El-Shafie, I. M. Ibrahim, and A. M. Abd El Rahman, (2012) “The addition effects of macro and nano clay on the performance of asphalt binder" Egyptian Journal of Petroleum 21(2): 149–154. DOI: 10.1016/j.ejpe.2012.11.008.
  5. [5] F. J. Ortega, F. J. Navarro, M. García-Morales, and T. McNally, (2017) “Effect of shear processing on the linear viscoelastic behaviour and microstructure of bitumen/montmorillonite/MDI ternary composites" Journal of Industrial and Engineering Chemistry 48: 212–223. DOI: 10.1016/j.jiec.2017.01.004.
  6. [6] M. E. Abdullah, K. A. Zamhari, R. Buhari, M. N. Nayan, and M. R. Hainin, (2014) “Short Term and Long Term Aging Effects of Asphalt Binder Modified with Montmorillonite" Key Engineering Materials 595: 996–1002. DOI: 10.4028/
  7. [7] H. Di Benedetto, F. Olard, C. Sauzéat, and B. Delaporte, (2012) “Linear viscoelastic behaviour of bituminous materials: From binders to mixes" Road Materials and Pavement Design 5(sup1): 163–202. DOI: 10.1080/14680629.2004.9689992.
  8. [8] J. M. L. Crucho, J. M. C. das Neves, S. D. Capitão, and L. G. de Picado-Santos, (2018) “Mechanical performance of asphalt concrete modified with nanoparticles: Nanosilica, zero-valent iron and nanoclay" Construction and Building Materials 181: 309–318. DOI: 10.1016/j.conbuildmat.2018.06.052.
  9. [9] A. Mansourian, A. Rezazad, and F. Karimian, (2019) “Performance evaluation of asphalt binder modified with EVA / HDPE / nanoclay based on linear and non-linear viscoelastic behaviors" Construction and Building Materials 208: 554–563. DOI: 10.1016/j.conbuildmat.2019.03.065.
  10. [10] V. S. Punith and A. Veeraragavan, (2011) “Behavior of Reclaimed Polyethylene Modified Asphalt Cement for Paving Purposes" Journal of Materials in Civil Engineering 23(6): 833–845. DOI: 10.1061/(asce)mt.1943-5533.0000235.
  11. [11] M. Ameri, R. Mohammadi, M. Vamegh, and M. Molayem, (2017) “Evaluation the effects of nanoclay on permanent deformation behavior of stone mastic asphalt mixtures" Construction and Building Materials 156: 107–113. DOI: 10.1016/j.conbuildmat.2017.07.055.
  12. [12] G. Liu, M. Van De Ven, S. Wu, J. Yu, and A. Molenaar, (2011) “Influence of organo-montmorillonites on fatigue properties of bitumen and mortar" International Journal of Fatigue 33(12): 1574–1582. DOI: 10.1016/j.ijfatigue.2011.06.014.
  13. [13] M. Kotal and A. K. Bhowmick, (2015) “Polymer nanocomposites from modified clays: Recent advances and challenges" Progress in Polymer Science 51: 127–187. DOI: 10.1016/j.progpolymsci.2015.10.001.
  14. [14] E. A. Siddig, C. P. Feng, and L. Y. Ming, (2018) “Effects of ethylene vinyl acetate and nanoclay additions on high-temperature performance of asphalt binders" Construction and Building Materials 169: 276–282. DOI: 10.1016/j.conbuildmat.2018.03.012.
  15. [15] C. Fang, R. Yu, Y. Zhang, J. Hu, M. Zhang, and X. Mi, (2012) “Combined modification of asphalt with polyethylene packaging waste and organophilic montmorillonite" Polymer Testing 31(2): 276–281. DOI: 10.1016/j.polymertesting.2011.11.008.
  16. [16] M. E. Abdullah, K. A. Zamhari, M. R. Hainin, E. A. Oluwasola, N. A. Hassan, and N. I. M. Yusoff, (2016) “Engineering properties of asphalt binders containing nanoclay and chemical warm-mix asphalt additives" Construction and Building Materials 112: 232–240. DOI: 10.1016/j.conbuildmat.2016.02.089.
  17. [17] L. de Godoi. “Estudo do comportamento dos ligantes asfálticos utilizados na imprimação asfáltica relacionados à emissão de voc’s". (Master). Universidade Federal do Paraná, 2011, 167.
  18. [18] M. A. Farrukh, K. M. Butt, K. K. Chong, and W. S. Chang, (2019) “Photoluminescence emission behavior on the reduced band gap of Fe doping in CeO2-SiO2 nanocomposite and photophysical properties" Journal of Saudi Chemical Society 23(5): 561–575. DOI: 10.1016/j.jscs.2018.10.002.
  19. [19] S. A. Al-Bayaty, R. A. Al-Uqaily, and N. J. Jubier, (2020) “Using the Coats-Redfern method during thermogravimetric analysis and differential scanning calorimetry analysis of the thermal stability of epoxy and epoxy/silica nanoparticle nanocomposites" Journal of Southwest Jiaotong University 55(4): DOI: 10.1002/9783527678679.dg03068.
  20. [20] N. Nciri, J. Kim, N. Kim, and N. Cho, (2016) “An in-depth investigation into the physicochemical, thermal, microstructural, and rheological properties of petroleum and natural asphalts" Materials 9(10): 3–20. DOI: 10.3390/ma9100859.
  21. [21] G. Cheraghian, M. P. Wistuba, S. Kiani, A. R. Barron, and A. Behnood, (2021) “Rheological, physicochemical, and microstructural properties of asphalt binder modified by fumed silica nanoparticles" Scientific Reports 11: 1–20. DOI: 10.1038/s41598-021-90620-w.
  22. [22] B. B. Nyakuma. “Thermal oxidative and nonoxidative degradation behaviour of afuze coal”. 2021. DOI: 10.20944/preprints202105.0355.v1.
  23. [23] K. S. Yoshiki and C. R. Phillips, (1985) “Kinetics of the thermo-oxidative and thermal cracking reactions of Athabasca bitumen" Fuel 64(11): 1591–1598. DOI: 10.1016/0016-2361(85)90377-1.
  24. [24] M. V. Kok, (2011) “Thermo-oxidative reactions of crude oils": 411–414. DOI: 10.1007/s10973-010-1117-x.
  25. [25] S. H. Firoozifar, S. Foroutan, and S. Foroutan, (2011) “Chemical Engineering Research and Design The effect of asphaltene on thermal properties of bitumen" Chemical Engineering Research and Design 89(10): 2044–2048. DOI: 10.1016/j.cherd.2011.01.025.
  26. [26] H. Yu, Z. Leng, and Z. Gao, (2016) “Thermal analysis on the component interaction of asphalt binders modified with crumb rubber and warm mix additives" Construction and Building Materials 125: 168–174. DOI: 10.1016/j.conbuildmat.2016.08.032.
  27. [27] X. Fu, M. He, and Y. Liu. “Study on aging of lignin modified asphalt under thermogravimetric conditions”. In: E3S Web of Conferences. 233. 2021, 4–7.
  28. [28] M. B. Ahmad, Y. Gharayebi, M. S. Salit, M. Z. Hussein, and K. Shameli, (2011) “Comparison of In Situ Polymerization and Solution-Dispersion Techniques in the Preparation of Polyimide / Montmorillonite ( MMT ) Nanocomposites" International Journal of Molecular Sciences 12: DOI: 10.3390/ijms12096040.
  29. [29] S. Gaidukov, U. Cabulis, K. Gromilova, V. Tupureina, and A. Grigalovica, (2013) “Preparation and structural properties of free films from rapeseed oil-based rigid polyurethane-montmorillonite nanocomposites" International Journal of Polymer Science 2013: DOI: 10.1155/2013/834595.
  30. [30] A. Behnood and M. Modiri Gharehveran. Morphology, rheology, and physical properties of polymer-modified asphalt binders. 2019. DOI: 10.1016/j.eurpolymj.2018.10.049.
  31. [31] C. Fang, R. Yu, Y. Li, M. Zhang, J. Hu, and M. Zhang, (2013) “Preparation and characterization of an asphaltmodifying agent with waste packaging polyethylene and organic montmorillonite" Polymer Testing 32(5): 953–960. DOI: 10.1016/j.polymertesting.2013.04.006.
  32. [32] D. R. do Nascimento, R. M. Bringel, T. T. F. Pamplona, J. B. Soares, and S. d. A. Soares, (2008) “ENERGIA DE ATIVAÇÃO DE FLUXO E A CORRELAÇÃO COM AS PROPRIEDADES DOS LIGANTES ASFÁLTICOS."



60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.