Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Muslikhin Hidayat This email address is being protected from spambots. You need JavaScript enabled to view it.1, Nisrina Afifahtul Aqilah1, and Adi Winata1

1Department of Chemical Engineering, Faculty of Engineering, Gadjah Mada University Jalan Grafika No. 2, Yogyakarta, Indonesia, Post Code 55281, fax: +62-274-555320


 

Received: September 21, 2021
Accepted: January 4, 2022
Publication Date: February 10, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202212_25(6).0013  


ABSTRACT


Oil palm empty fruit bunch (OPEFB) is lignocellulose consisting of cellulose, hemicellulose, and lignin. Lignin can be converted into derivative materials such as phenols, acetic acid, adhesives, surfactants, polymer products, and other chemical sources. This study was focused on extracting crude extract powder from OPEFB using NaOH solution. The correlation between processing time on yield and lignin content; and also, functional groups of the resulting lignin solids were analyzed. Delignification using NaOH was carried out in a three-neck flask in a batch process. The concentration variation of NaOH is 10, 15, 20, 25, and 30 (wt.%) while experiments were carried out in duration times of 60, 90, 120, 150, and 180 minutes. The operating temperature was set at a temperature of 90 ◦C. In the delignification process with various concentrations of NaOH solution, the experimental results showed that the correlation between the processing time on the yield and the lignin content produced is initially and directly proportional. The optimum condition occurred when the processing time reached 120 minutes. Increasing the processing time caused a decrease in the yield and the lignin content produced. Over-processing may cause a degradation of dissolved lignin. Based on the optimum processing time result, the concentration of NaOH solution was investigated. The results showed that the optimum concentration of NaOH solution was 20%. The results from the FTIR analysis showed that the crude extract powder produced in this study had the wavelength of the constituent functional groups that were matching the standard lignin constituent functional groups.


Keywords: delignification, extraction, isolation of lignin, oil palm empty fruit bunches


REFERENCES


  1. [1] S. N. Utami. “10 Komoditas Unggulan Indonesia”. Accessed Jul. 15, 2021. http://www.kompas.com/skola/read/2021/02/22/150018269/10-komoditasunggulan-indonesia?page=all. 2021.
  2. [2] Katadata. “Kelapa Sawit Sebagai Penopang Perekonomian Nasional”. Accessed Apr. 15, 2021. https : / / katadata . co . id / timrisetdanpublikasi /berita / 5e9a4e6105c28 / kelapa - sawit - sebagai -penopang-perekonomian-nasional. 2019.
  3. [3] M. Marhendraswari, K. Mondylaksita, R. Millati, W. Budhijanto, J. Ferreira, C. Niklasson, and M. Taherzadeh. “Production of edible fungal (Rhizopus delemar CBS 145940) biomass from organosolvpretreated oil palm empty fruit bunch (OPEFB) in submerged fermentation”. In: 991. 1. cited By 1. 2020. DOI: 10.1088/1757-899X/991/1/012041.
  4. [4] Rame. “Oil Palm Empty Fruit Bunches (OPEFB): Existing Utilization and Current Trends Bio Refinery in Indonesia”. In: 31. cited By 4. 2018. DOI: 10.1051/e3sconf/20183103014.
  5. [5] R. Tirtoatmodjo and W. Anggono, (1999) “Peningkatan unjuk kerja motor diesel dengan penambahan pemanas solar" Jurnal Teknik Mesin 1(2): 127–133.
  6. [6] D. Anggraini and H. Roliadi, (2011) “Pembuatan pulp dari tandan kosong kelapa sawit untuk karton pada skala usaha kecil" Jurnal Penelitian Hasil Hutan 29(3): 211–225.
  7. [7] D. Dachriyanus, (2004) “Analisis struktur senyawa organik secara spektroskopi" LPTIK Universitas Andalas:
  8. [8] A. Demirba¸s, (2001) “Biomass resource facilities and biomass conversion processing for fuels and chemicals" Energy Conversion and Management 42(11): 1357–1378. DOI: 10.1016/S0196-8904(00)00137-0.
  9. [9] P. G, S. AS, J. Jayan, A. Raman, and A. Saritha, (2021) “Lignin based nano-composites: Synthesis and applications" Process Safety and Environmental Protection 145: 395–410. DOI: 10.1016/j.psep.2020.11.017.
  10. [10] F. Chowdhury, Q. Xu, K. Sinha, and X.Wang, (2021) “Novel application of lignin biopolymer for radiative cooling" Infrared Physics and Technology 117: DOI: 10.1016/j.infrared.2021.103840.
  11. [11] M. Nasrollahzadeh, N. Shafiei, Z. Nezafat, and N. Bidgoli, (2020) “Recent progresses in the application of lignin derived (nano)catalysts in oxidation reactions" Molecular Catalysis 489: DOI: 10.1016/j.mcat.2020.110942.
  12. [12] K. Mondylaksita, J. Ferreira, R.Millati,W. Budhijanto, C. Niklasson, and M. Taherzadeh, (2020) “Recovery of high purity lignin and digestible cellulose from oil palm empty fruit bunch using low acid-catalyzed organosolv pretreatment" Agronomy 10(5): DOI: 10.3390/agronomy10050674.
  13. [13] R. Millati, R. Wikandari, T. Ariyanto, R. Putri, and M. Taherzadeh, (2020) “Pretreatment technologies for anaerobic digestion of lignocelluloses and toxic feedstocks" Bioresource Technology 304: DOI: 10.1016/j.biortech. 2020.122998.
  14. [14] R. Datta, (1981) “Acidogenic fermentation of lignocellulose–acid yield and conversion of components" Biotechnology and Bioengineering 23(9): 2167–2170. DOI: 10.1002/bit.260230921.
  15. [15] E. Sjostrom. Wood chemistry: fundamentals and applications. Gulf professional publishing, 1993.
  16. [16] T. Harsini, (2010) “Susilowati. 2004. Pemanfaatan Kulit Buah Kakao dari Limbah Perkebunan Kakao Sebagai Bahan Baku PULP dengan Proses Organosolv" Jurnal Ilmiah Teknik Lingkungan 2(2): 80–89.
  17. [17] N. Aqilah. “Pengaruh Waktu Pemasakan pada Proses Delignifikasi Soda Kaustik (NaOH) terhadap Isolat Lignin dari Tandan Kosong Kelapa Sawit". (mathesis). Fakultas Teknik Universitas Gadjah Mada Jl. Grafika No.2, Kampus UGM, Yogyakarta, 55281: Departemen Teknik Kimia, UGM, 2021, 33.
  18. [18] L. Kline, D. Hayes, A.Womac, and N. Labbé, (2010) “Simplified determination of lignin content in hard and soft woods via UV-spectrophotometric analysis of biomass dissolved in ionic liquids" BioResources 5(3): 1366–1383.
  19. [19] S. Singh and P. Dhepe, (2016) “Isolation of lignin by organosolv process from different varieties of rice husk: Understanding their physical and chemical properties" Bioresource Technology 221: 310–317. DOI: 10.1016/j.biortech.2016.09.042.
  20. [20] A. Winata. “Pengaruh Konsentrasi Pelarut Natrium Hidroksida (NaOH) pada Proses Isolasi Lignin dari Tandan Kosong Kelapa Sawit (TKKS)". (mathesis). Fakultas Teknik Universitas Gadjah Mada Jl. Grafika No.2, Kampus UGM, Yogyakarta, 55281: Departemen Teknik Kimia, UGM, 2021, 30.
  21. [21] I. B.W. Gunam, N. M.Wartini, A. Anggreni, and P. M. Suparyana, (2011) “Delignifikasi ampas tebu dengan larutan natrium hidroksida sebelum proses sakaraifikasi secara enzimatis menggunakan enzim selulase kasar dari Aspergillus niger Fnu 6018" Jurnal teknologi Indonesia 34(3): 24–32.