Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Mao-Kuo Wei  1, I-Ling Su2 , Ming-Chang Jung1 and Kai-Wen Huang1

1Institute of Materials Science and Engineering National Dong Hwa University Shoufeng, Taiwan 974, R.O.C.
2Institute of Mechanical Engineering Chung Yuan Christian University Chungli, Taiwan 320, R.O.C.


 

Received: January 14, 2004
Accepted: February 11, 2004
Publication Date: June 1, 2004

Download Citation: ||https://doi.org/10.6180/jase.2004.7.2.05  


ABSTRACT


A real-time monitoring system for the spherical microlens formation has been demonstrated. The geometrical shape of the photoresist structure during thermal flow process could be interpreted by the recorded images. Additionally, the thermal reflow mechanism for the rectangular photoresist plate has also been proposed.


Keywords: Microlens, Real-time Monitor, Thermal Reflow


REFERENCES


  1.  [1] Park, E. H., Kim, M. J. and Kwon, Y. S. “Microlens for Effic ient Coupling between LED and Optical Fiber,” IEEE Photonics Technol. Lett., Vol. 11, pp. 439-441 (1999).
  2. [2] Cho, S. R., Kim, J., Oh, K. S., Yang, S. K. Baek, J. M., Jang, D. H., Kim, T. I. and Jeon, H. “Enhanced Optical Coupling Performance in an InGaAs Photodiode Integrated with Wet-etched Microlens,” IEEE Photonics Technol. Lett., Vol. 14, pp. 378-380 (2002).
  3. [3] Möller, S. and Forrest, S. R. “Improved Light Out-coupling in Organic Light Emitting Diodes Employed Ordered Microlens Arrays,” J. Appl. Phys., Vol. 91, pp. 3324- 3327 (2002).
  4. [4] Smuk, A. Y. and Lawandy, N. M. “Direct Laser Fabrication of Dense Microlens Arrays in Semiconductor-doped Glass,” J. Appl. Phys., Vol. 87, pp. 4026-4030 (2000).
  5. [5] Croutx e -Barghorn, C., Soppera, O. and Lougnot, D. J. “Fabrication of Microlenses by Direct Photo-induced Crosslinking Polymerization,” Appl. Surf. Sci., Vol. 168, pp. 89-91 (2000).
  6. [6] Lee, C. S. and Han, C. H. “A Novel Refractive Silicon Microlens Array Using Bulk Micro-machining Technology,” Sensors and Actuators A, Vol. 88, pp. 87-90 (2001).
  7. [7] Danzebrink, R. and Aegerter, M. A. “Deposition of Optical Microlens Arrays by Ink-jet Processes,” Thin Solid Films, Vol. 392, pp. 223-225 (2001).
  8. [8] Ong, N. S. Koh, Y. H. and Fu, Y. Q. “Microlens Array Produced Using Hot Embossing Process,” Microelectron. Eng., Vol. 60, pp. 365-379 (2002).
  9. [9] Lin, C. P., Yang H. and Chao, C. K. “Hexagonal Microlens Array Modeling and Fabric - ation Using a Thermal Reflow Process,” J. Micromech. Microeng., Vol. 13, pp. 1-7 (2003).
  10. [10] Kunnavaakkam, M. V., Houlihan, F. M., Schlax, M., Liddle, J. A., Kolodner, P., Nalamasu, O. and Rogers, J. A. “Low-cost, Low-loss Microlens Arrays Fabricated by Soft-lithography Replication Process,” Appl. Phys. Lett., Vol. 82, pp. 1152-1154 (2003).