Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

S. P. S. N Buddhika Sampath Kumara1,2,3, S. W. M. A. Ishantha Senevirathne1,3, Asha Mathew1,3,6, Preetha Ebenezer1,3, Tejasri Yarlagadda5, Laura Bray1,3, Mohammad Mirkhalaf1,3,4This email address is being protected from spambots. You need JavaScript enabled to view it., and Prasad K. D. V. Yarlagadda1,2,3,6This email address is being protected from spambots. You need JavaScript enabled to view it.

1School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia

2Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology (QUT), Brisbane, QLD, Australia

3Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia

4Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia

5Centre for Immunology and Infection Control, Queensland University of Technology (QUT), Brisbane, QLD, Australia

6School of Engineering, University of Southern Queensland, Springfield, QLD, Australia


 

 

Received: December 8, 2023
Accepted: August 9, 2023
Publication Date: September 12, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202506_28(6).0015  


The developments of nano-roughness surface textures are important to implement enhanced osseointegration, cell adhesion, and proliferation in polymers for biomedical applications such as tissue engineering scaffolds and orthopaedic implants. The hydrophilicity of the polymeric implants is a crucial factor for cell adhesion, which can be improved via adapting the roughness of the surface. This study explores the surface modification of poly (lactic acid) (PLA) polymer through an alkaline wet etching process, varying alkaline concentration and etching time under both room temperature and elevated conditions. The main objective is to refine the PLA surface through wet etching, altering its properties for potential use in biomedical contexts. The assessment of surface roughness is conducted through scanning electron microscopy (SEM), atomic force microscopy (AFM), and fourier-transform infrared spectroscopy (FTIR). These techniques offer a comprehensive analysis of surface topography, nanoscale roughness, and potential chemical changes resulting from the wet etching process. The nano-roughness of treated 3D printed PLA was increased by 1.4 times compared to the control 3D printed PLA. The research contributes to the broader field of biomaterial engineering, laying the groundwork for subsequent investigations that will focus on applying the derived conclusions to enhance PLA’s biocompatibility and functionality in tissue engineering and orthopaedic applications.


Keywords: Surface modification; Nanostructures; Tissue engineering; Biocompatible; Biodegradable


  1. [1] A. Abdulkareem, P. Kasak, M. G. Nassr, A. A. Mahmoud, M. K. A. Al-Ruweidi, K. J. Mohamoud, M. K. Hussein, and A. Popelka, (2021) “Surface modification of poly (lactic acid) film via cold plasma assisted grafting of fumaric and ascorbic acid" Polymers 13(21): 3717. DOI: 10.3390/polym13213717.
  2. [2] H. Al Abdallah, B. Abu-Jdayil, and M. Z. Iqbal, (2022) “The effect of alkaline treatment on poly (lactic acid)/date palm wood green composites for thermal insulation" Polymers 14(6): 1143. DOI: 10.3390/polym14061143.
  3. [3] T. Aoki, H. Izumi, and S. Aoyagi. “Fabrication of a micro needle made of biodegradable polymer material”. In: Mechatronics for safety, security and dependability in a new era. Elsevier, 2007, 381–384. DOI: 10.1016/B978-008044963-0/50077-1.
  4. [4] S. Aoyagi, H. Izumi, Y. Isono, M. Fukuda, and H. Ogawa, (2007) “Laser fabrication of high aspect ratio thin holes on biodegradable polymer and its application to a microneedle" Sensors and Actuators A: Physical 139(1-2): 293–302. DOI: 10.1016/j.sna.2006.11.022.
  5. [5] F. Asghari, M. Samiei, K. Adibkia, A. Akbarzadeh, and S. Davaran, (2017) “Biodegradable and biocompatible polymers for tissue engineering application: a review" Artificial cells, nanomedicine, and biotechnology 45(2): 185–192. DOI: 10.3109/21691401.2016.1146731.
  6. [6] A. Bagno and C. Di Bello, (2004) “Surface treatments and roughness properties of Ti-based biomaterials" Journal of materials science: materials in medicine 15(9): 935–949. DOI: 10.1023/B:JMSM.0000042679.28493.7f.
  7. [7] B. D. Boyan, V. L. Sylvia, Y. Liu, R. Sagun, D. L. Cochran, C. H. Lohmann, D. D. Dean, and Z. Schwartz, (1999) “Surface roughness mediates its effects on osteoblasts via protein kinase A and phospholipase A2" Biomaterials 20(23-24): 2305–2310. DOI: 10.1016/S0142-9612(99)00159-3.
  8. [8] W. Chen, L. Nichols, F. Brinkley, K. Bohna, W. Tian, M. W. Priddy, and L. B. Priddy, (2021) “Alkali treatment facilitates functional nano-hydroxyapatite coating of 3D printed polylactic acid scaffolds" Materials Science and Engineering: C 120: 111686. DOI: 10.1016/j.msec.2020.111686.
  9. [9] Y. Cheng, X. Ma, T. Franklin, R. Yang, and C. I. Moraru, (2023) “Mechano-Bactericidal Surfaces: Mechanisms, Nanofabrication, and Prospects for Food Applications" Annual Review of Food Science and Technology 14(1): 449–472. DOI: 10.1146/annurev-food060721-022330.
  10. [10] B. W. Chieng, N. A. Ibrahim, W. M. Z. Wan Yunus, and M. Z. Hussein, (2013) “Poly (lactic acid)/poly (ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets" Polymers 6(1): 93–104. DOI: 10.3390/polym6010093.
  11. [11] F. Ebrahimi and H. Ramezani Dana, (2022) “Poly lactic acid (PLA) polymers: from properties to biomedical applications" International Journal of Polymeric Materials and Polymeric Biomaterials 71(15): 1117–1130. DOI: 10.1080/00914037.2021.1944140.
  12. [12] W. H. Hoidy, M. B. Ahmad, E. A. J. Al-Mulla, and N. A. B. Ibrahim, (2010) “Preparation and characterization of polylactic acid/polycaprolactone clay nanocomposites" J. Appl. Sci 10(2): 97–106. DOI: 10.3923/jas.2010.97.106.
  13. [13] G. Hazell, L. E. Fisher, W. A. Murray, A. H. Nobbs, and B. Su, (2018) “Bioinspired bactericidal surfaces with polymer nanocone arrays" Journal of colloid and interface science 528: 389–399. DOI: 10.1016/j.jcis.2018.05.096.
  14. [14] K. M. Hotchkiss, K. T. Sowers, and R. OlivaresNavarrete, (2019) “Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants" Dental Materials 35(1): 176–184. DOI: 10. 1016/j.dental.2018.11.011.
  15. [15] H. Ikram, A. Al Rashid, and M. Koç, (2022) “Synthesis and characterization of hematite (α-Fe2O3) reinforced polylactic acid (PLA) nanocomposites for biomedical applications" Composites Part C: Open Access 9: 100331. DOI: 10.1016/j.jcomc.2022.100331.
  16. [16] R. Jiang, Y. Yi, L. Hao, Y. Chen, L. Tian, H. Dou, J. Zhao, W. Ming, and L. Ren, (2021) “Thermoresponsive nanostructures: from mechano-bactericidal action to bacteria release" ACS Applied Materials & Interfaces 13(51): 60865–60877. DOI: 10.1021/acsami.1c16487.
  17. [17] A. Karthikeyan, M. Girard, M.-J. Dumont, G. Chouinard, and J. R. Tavares, (2022) “Surface modification of commercially available PLA polymer Mesh" Industrial & Engineering Chemistry Research 61(47): 17297–17305. DOI: 10.1021/acs.iecr.2c02502.
  18. [18] S. B. S. Kumara, S. A. I. Senevirathne, A. Mathew, L. Bray, M. Mirkhalaf, and P. K. Yarlagadda, (2023) “Progress in Nanostructured Mechano-Bactericidal Polymeric Surfaces for Biomedical Applications" Nanomaterials 13(20): 2799. DOI: 10.3390/nano13202799.
  19. [19] L.-T. Lim, R. Auras, and M. Rubino, (2008) “Processing technologies for poly (lactic acid)" Progress in polymer science 33(8): 820–852. DOI: 10.1016/j.progpolymsci.2008.05.004.
  20. [20] B. Majhy, P. Priyadarshini, and A. Sen, (2021) “Effect of surface energy and roughness on cell adhesion and growth–facile surface modification for enhanced cell culture" RSC advances 11(25): 15467–15476. DOI: 10.1039/D1RA02402G.
  21. [21] G. R. M. Matos, (2021) “Surface roughness of dental implant and osseointegration" Journal of maxillofacial and oral surgery 20: 1–4. DOI: 10.1007/s12663-020- 01437-5.
  22. [22] D. W. Mayo, F. A. Miller, and R. W. Hannah. Course notes on the interpretation of infrared and Raman spectra. John Wiley & Sons, 2004. DOI: 10.1002/0471690082.
  23. [23] J. P. Mofokeng, A. Luyt, T. Tábi, and J. Kovács, (2012) “Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices" Journal of Thermoplastic Composite Materials 25(8): 927–948. DOI: 10.1177/0892705711423291.
  24. [24] M. M. Sabee, N. Kamalaldin, B. Yahaya, and Z. A. Hamid, (2016) “Characterization and in vitro study of surface modified PLA microspheres treated with NaOH" Journal of Polymer Materials 33(1): 191. DOI: 10.32381/JPM.
  25. [25] A. B. D. Nandiyanto, R. Oktiani, and R. Ragadhita, (2019) “How to read and interpret FTIR spectroscope of organic material" Indonesian Journal of Science and Technology 4(1): 97–118. DOI: 10.17509/ijost.v4i1.15806.
  26. [26] E. Nasatzky, J. Gultchin, and Z. Schwartz, (2003) “The role of surface roughness in promoting osteointegration" Refu’at Ha-peh Veha-shinayim (1993) 20(3): 8–19.
  27. [27] D. Patil, V. Golia, M. Overland, M. Stoller, and K. Chatterjee, (2023) “Mechanobactericidal nanotopography on nitrile surfaces toward antimicrobial protective gear" ACS macro letters 12(2): 227–233. DOI: 10.1021/acsmacrolett.2c00697.
  28. [28] M. A. Pop, C. Croitoru, T. Bedo, V. Geaman, I. Radomir, M. Cosnita, S. M. Zaharia, L. A. Chicos, and I. Milosan, (2019) “Structural changes during 3D printing of bioderived and synthetic thermoplastic materials" Journal of Applied Polymer Science 136(17): 47382. DOI: 10.1002/app.47382.
  29. [29] M. Schneider, N. Fritzsche, A. Puciul-Malinowska, A. Bali´s, A. Mostafa, I. Bald, S. Zapotoczny, and A. Taubert, (2020) “Surface etching of 3D printed poly (lactic acid) with NaOH: a systematic approach" Polymers 12(8): 1711. DOI: 10.3390/polym12081711.
  30. [30] C. Shasteen and Y. B. Choy, (2011) “Controlling degradation rate of poly (lactic acid) for its biomedical applications" Biomedical Engineering Letters 1: 163–167. DOI: 10.1007/s13534-011-0025-8.
  31. [31] D. Da Silva, M. Kaduri, M. Poley, O. Adir, N. Krinsky, J. Shainsky-Roitman, and A. Schroeder, (2018) “Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems" Chemical Engineering Journal 340: 9–14. DOI: 10.1016/j.cej.2018.01.010.
  32. [32] M. Singhvi, S. Zinjarde, and D. Gokhale, (2019) “Polylactic acid: synthesis and biomedical applications" Journal of applied microbiology 127(6): 1612–1626. DOI: 10.1111/jam.14290.
  33. [33] P. Singla, R. Mehta, D. Berek, and S. Upadhyay, (2012) “Microwave assisted synthesis of poly (lactic acid) and its characterization using size exclusion chromatography" Journal of Macromolecular Science, Part A 49(11): 963–970. DOI: 10.1080/10601325.2012.722858.
  34. [34] C. Tham, Z. A. A. Hamid, Z. Ahmad, and H. Ismail, (2014) “Surface engineered poly (lactic acid)(PLA) microspheres by chemical treatment for drug delivery system" Key Engineering Materials 594: 214–218. DOI: 10.4028/www.scientific.net/KEM.594-595.214.
  35. [35] R. Vaid, E. Yildirim, M. A. Pasquinelli, and M. W. King, (2021) “Hydrolytic degradation of polylactic acid fibers as a function of ph and exposure time" Molecules 26(24): 7554. DOI: 10.3390/molecules26247554.
  36. [36] Y. Deng, X. Liu, A. Xu, L. Wang, Z. Luo, Y. Zheng, F. Deng, J. Wei, Z. Tang, and S. Wei, (2015) “Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone– nanohydroxyapatite composite" International journal of nanomedicine: 1425–1447. DOI: 10.2147/IJN.S75557.
  37. [37] J. Xia, Y. Yuan, H. Wu, Y. Huang, and D. A. Weitz, (2020) “Decoupling the effects of nanopore size and surface roughness on the attachment, spreading and differentiation of bone marrow-derived stem cells" Biomaterials 248: 120014. DOI: 10.1016/j.biomaterials.2020.120014.
  38. [38] M. Zhao, L. Dai, N. Zhong, Z. Wang, M. Chen, B. Li, B. Luo, B. Tang, S. Shi, T. Song, et al., (2017) “Wet etching technique for fabrication of a high-quality plastic optical fiber sensor" Applied Optics 56(31): 8845–8850. DOI: 10.1364/AO.56.008845.
  39. [39] B. Tyler, D. Gullotti, A. Mangraviti, T. Utsuki, and H. Brem, (2016) “Polylactic acid (PLA) controlled delivery carriers for biomedical applications" Advanced drug delivery reviews 107: 163–175. DOI: 10.1016/j.addr.2016.06.018.


    



 

2.1
2023CiteScore
 
 
69th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.