Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Zhaoliang LiuThis email address is being protected from spambots. You need JavaScript enabled to view it., Jie Hui, and Changfei Sun

College of Marine Electrical and Intelligent Engineering, Jiangsu Maritime Institute, Nanjing 211170, China


 

Received: January 28, 2023
Accepted: April 29, 2024
Publication Date: May 23, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202503_28(3).0014  


The strengthening mechanisms in High Chromium Cast Iron (HCCIs) tends to introduce anisotropic properties in the composite. To address this, the present study employed a vacuum metallurgy furnace with precise temperature control to prepare HCCIs-based composite materials fused with TiC. The resulting composites were then evaluated for their wear resistance and corrosion resistance. Experimental results indicate that incorporating approximately 10%TiC in the wear resistance experiment enhances the wear resistance of ascast HCCIs by over 60%, reducing the wear rate to 5 cm3/cm × 10−8 . Among the tested specimens, A3 and R2 exhibit the highest wear resistance under a 10 N load, with scratch widths measuring only 0.13 mm and 0.14 mm, respectively. With a load of 30 N, specimens A3 and R3 display the narrowest and shallowest scratches in terms of both depth and width. Furthermore, the rapid increase in friction coefficient is attributed to the strong adhesion between the contact surface and is closely linked to the hardness and roughness of said surface. During corrosion resistance experiments, specimen A0 demonstrates the largest impedance value at the same frequency, reaching up to 5.8 ohm − cm2 . The degree of oxidation increases with the rise in the number of carbides within the composite, resulting in a significant weight gain over time. In conclusion, increasing the TiC content in HCCIs-based composite materials enhances their wear resistance while reducing their susceptibility to corrosion. Within an acceptable range, these composites hold great potential for applications in friction and wear conditions.

 


Keywords: HCCIs; Wear resistance; Corrosion resistance; Composite materials


  1. [1] F. Zhang, W. Zhao, W. Zhang, Z. Liao, X. Xiang, H. Gou, Z. Li, H. Wei, X. Wu, and Q. Shan, (2023) “Microstructure, Mechanical Properties and Wear Resistance of Rare Earth Doped WC/Steel Matrix Composites: Experimental and Calculations" Ceramics International 49: 2638–2647. DOI: 10.1016/j.ceramint.2022.09.244.
  2. [2] H. ˙I. Yavuz, B. Eyri, and E. Feyzullaho˘glu, (2023) “The Influence of Alloying Elements on Tribological Properties of Fe-Cu-C based Metal Matrix Composite Bearing Materials Produced by Powder Metallurgy" Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 237: 288–299. DOI: 10.1177/13506501221109042.
  3. [3] S. Wang, C. XuYang, J. He, Z. Yang, Z. Dong, and G. Li, (2022) “Establishment of Wear Mechanism Distribution Diagram of ZTAp-Reinforced Iron Matrix Composites" Science and Engineering of Composite Materials 29: 427–437. DOI: 10.1515/secm-2022-0170.
  4. [4] S. Daronde, A. Kuthe, S. Keerti, R. Khatirkar, A. Bagde, M. Kamble, and S. Dahake, (2022) “The Effect of Vacuum on the Mechanical Properties of Sand Cast AA6061 Alloy" Journal of Materials Engineering and Performance 31: 262–271. DOI: 10.1007/s11665-021-06154-9.
  5. [5] A. Kumar, S. Kumar, N. K. Mukhopadhyay, A. Yadav, and D. K. Sinha, (2022) “Effect of TiC Reinforcement on Mechanical and Wear Properties of AZ91 Matrix Composites" International Journal of Metalcasting 16: 2128–2143. DOI: 10.1007/s40962-021-00747-9.
  6. [6] A. Günen, M. Kalkandelen, ˙I. H. Karahan, B. Kurt, E. Kanca, M. S. Gök, and M. Serdar Karaka¸s, (2020) “Properties and Corrosion Behavior of Chromium and Vanadium Carbide Composite Coatings Produced on Ductile Cast Iron by Thermoreactive Diffusion Technique" Journal of Engineering Materials and Technology 142: 041008. DOI: 10.1115/1.4047743.
  7. [7] A. Günen, E. Kanca, M. S. Karaka¸s, M. S. Gök, M. Kalkandelen, B. Kurt, and I. H. Karahan, (2021) “Effect of Thermal Degradation on the Properties and Wear Behavior of Cr-V-C Composite Coatings Grown on Ductile Iron" Surface and Coatings Technology 419: 127305. DOI: 10.1016/j.surfcoat.2021.127305.
  8. [8] X. Qi, Y. Li, F. Li, J. Du, C. Li, K. Wang, H. Lu, and B. Yang, (2022) “Improving the Properties of Remanufactured Wear Parts of Shield Tunneling Machines by Novel Fe-based Composite Coatings" Ceramics International 48: 6722–6733. DOI: 10.1016/j.ceramint.2021.11.223.
  9. [9] X. Zhong, W.-X. Wang, Y. Han, X. Li, S.-Q. Kou, and F. Qiu, (2022) “Enhancing the Strength-Ductility Synergy of Fe-based Composites by Changing Interface Bonding between Matrix and TiCx with Various Stoichiometric Ratios" Ceramics International 48: 31773–31782. DOI: 10.1016/j.ceramint.2022.07.104.
  10. [10] S. P. Dwivedi, M. Maurya, A. Saxena, and S. Sharma, (2022) “Synthesis and Characterization of Spent Alumina Catalyst and Grinding Sludge Reinforced Aluminiumbased Composite Material" Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 236: 5523–5534. DOI: 10.1177/09544062211061451.
  11. [11] W. Leng, L. Xu, T. Jiang, X. Wang, X. Shi, S. Wei, and M. Li, (2023) “Carbide and Matrix Microstructure Evolution of High-Vanadium Wear-Resistance Cast Iron with High-Silicon Content during Austempering" International Journal of Metalcasting 17: 1859–1870. DOI: 10.1007/s40962-022-00886-7.
  12. [12] Z. Wang, M. Zhou, M. Zhu, Y. Jiang, and Y. Sui, (2023) “Effect of Precursor Density on the Wear Resistance of inSitu TiC/Fe Matrix Composites based on Fe–Cr System Moderator" Ceramics International 49: 18925–18936. DOI: 10.1016/j.ceramint.2023.03.016.
  13. [13] F. A. Choudhury, N. Norouzi, K. Amir, M. Demir, and H. M. El-Kaderi, (2022) “Iron-based Sulfur and Nitrogen Dual Doped Porous Carbon as Durable Electrocatalysts for Oxygen Reduction Reaction" International Journal of Hydrogen Energy 47: 6078–6088. DOI: 10.1016/j.ijhydene.2021.12.020.
  14. [14] H. S. Maurya, K. Juhani, F. Sergejev, and K. Prashanth, (2022) “Additive Manufacturing of TiC-based Cermet with Stainless Steel as a Binder Material" Materials Today: Proceedings 57: 824–828. DOI: 10.1016/j.matpr.2022.02.428.
  15. [15] Q. Zhou, D. Huang, K. Xu, M. Lou, J. Lv, F. Wang, C. Zhan, T. Tang, and K. Chang, (2023) “Effect of La2O3 Addition on Microstructure and Mechanical Properties of TiC-based Cermets" Materials Today: Proceedings 49: 18125–18133. DOI: 10.1016/j.ceramint.2023.02.181.
  16. [16] A. Rogachev, S. Vadchenko, N. Kochetov, D. Y. Kovalev, I. Kovalev, A. Shchukin, A. Gryadunov, F. Baras, and O. Politano, (2020) “Combustion Synthesis of TiC-based Ceramic-Metal Composites with High Entropy Alloy Binder" Journal of the European Ceramic Society 40: 2527–2532. DOI: 10.1016/j.jeurceramsoc.2019.11.059.
  17. [17] M. Mahmud, M. S. Hossain, M. B. Mobarak, M. S. Quddus, M. S. Bashar, U. S. Akhtar, S. A. Jahan, D. Islam, and S. Ahmed, (2022) “Engineering GO@ Zn–Hap@ CA Porous Heterostructure for Ultra-Fast and Ultra-High Adsorption Efficacy: Investigation towards the Remediation of Chromium and Lead" Environmental Science: Advances 1: 827–848. DOI: 10.1039/D2VA00142J.
  18. [18] P. Jagadeesh, M. Puttegowda, S. M. Rangappa, and S. Siengchin, (2022) “Role of Polymer Composites in Railway Sector: an Overview" Applied Science and Engineering Progress 15: 5745–5745. DOI: 10.14416/j.asep.2022.02.005.
  19. [19] A. Bedolla-Jacuinde, B. Hernández, and L. BéjarGómez, (2022) “SEM Study on the M7C3 Carbide Nucleation during Eutectic Solidification of High-Chromium White Irons" International Journal of Materials Research 96: 1380–1385. DOI: 10.3139/146.101188.
  20. [20] A. Sánchez, A. Bedolla-Jacuinde, F. V. Guerra, F. V. Guerra, and I. Mejía, (2020) “Vanadium Additions to a High-Cr White Iron and its Effects on the Abrasive Wear Behavior" MRS Advances 5: 59–60. DOI: 10.1557/adv.2020.414.
  21. [21] D. S. Liu, W. M. Long, Y. C. Wu, P. Wei, K. J. Song, X. F. Li, R. Wang, and W. Zhou, (2020) “Alkaline Corrosion Resistance of Slag-Free Self-Shielded Titanium-Added Metal-Cored Welding Overlay" Materialwissenschaft und Werkstofftechnik 54: 275–283. DOI: 10.1002/mawe.202200161.
  22. [22] Y. P. Chsherbakova, A. Dostaeva, V. Y. Kulikov, S. S. Kvon, and A. Alina, (2023) “Studying Properties and Structure of Antifriction Cast Iron Additionally Alloyed with Titanium" Metalurgija 62: 455–457.
  23. [23] L. Chen, T. Yu, C. Guan, and Y. Zhao, (2022) “Microstructure and Properties of Metal Parts Remanufactured by Laser Cladding TiC and TiB2 Reinforced Fe-based Coatings" Ceramics International 48: 14127–14140. DOI: 10.1016/j.surfcoat.2022.128349.
  24. [24] L. X. Yang, R. J. Liu, H. P. Bu, H. J. Liu, C. L. Zeng, and C. Fu, (2022) “TiC Nanomaterials with Varying Dimensionalities as Anode Materials for Lithium-Ion Batteries" ACS Applied Nano Materials 5: 11787–11796. DOI: 10.1021/acsanm.2c02781.
  25. [25] X. Wen, B. Huang, Y. Xie, and X. Luo, (2022) “Preparation and properties of porous Fe-Al-x% TiC composite material" Journal of Materials Engineering and Performance 31(10): 8596–8604. DOI: 10.1007/s11665-022-06835-z.
  26. [26] X. Zhang, N. Ma, W. Ling, G. Pang, T. Sun, J. Liu, H. Pan, M. Cui, C. Han, C. Yang, J. Chang, X. Huang, and H. Wang, (2023) “A Micro-Nano Optogenetic System based on Probiotics for in Situ Host Metabolism Regulation" Nano Research 16: 2829–2839. DOI: 10.1007/s12274-022-4963-5.
  27. [27] C. Wu, T. Zhang, W. Guo, X. Meng, Z. Ding, and S. Y. Liang, (2022) “Laser-Assisted Grinding of Silicon Nitride Ceramics: Micro-Groove Preparation and Removal Mechanism" Ceramics International 48: 32366–32379. DOI: 10.1016/j.ceramint.2022.07.180.
  28. [28] S. Gong, X. Zhu, and Y. Sun, (2022) “Experimental research on surface characteristics and subsurface damage behavior of monocrystal sapphire induced by helical micro abrasive tools" Ceramics International 48: 21500–21513. DOI: 10.1016/j.ceramint.2022.04.114.
  29. [29] F. V. Guerra, A. Bedolla-Jacuinde, J. Zuno-Silva, I. Mejia, E. Cardoso-Legorreta, and A. Arenas-Flores, (2019) “Effect of the Simultaneous Ti and W Addition on the Microstructure and Wear Behavior of a High Chromium White Cast Iron" Metallurgical Research Technology 116: 602. DOI: 10.1051/metal/2019031.
  30. [30] N. L. Do Vale, C. A. Fernandes, R. d. A. Santos, T. F. Santos, and S. L. Urtiga Filho, (2021) “Effect of Laser Parameters on the Characteristics of a Laser Clad AISI 431 Stainless Steel Coating on Carbon Steel Substrate" JOM: the journal of the Minerals, Metals Materials Society 73: 2868–2877. DOI: 10.1007/s11837-021-04835-3.
  31. [31] Y. Li, D. Zhang, and W. Cong, (2022) “Feasibility Study of Adding Buffer Layers for the Laser Deposition of HighCeramic Content (TiB+ TiC)-Ti Coatings Using B4C/Ti Powders" Ceramics International 48: 23387–23396. DOI: 10.1016/j.ceramint.2022.04.330.
  32. [32] G. Wang, Y. Yang, M. Wang, R. He, C. Tan, W. Cao, and H. Xu, (2021) “Brazing ZrB2-SiC Ceramics to Nb with a Novel CoFeNiCrCu High Entropy Alloy" Journal of the European Ceramic Society 41: 54–61. DOI: 10.1016/j.jeurceramsoc.2020.08.050.
  33. [33] A. S. Jain, H. Chang, and M. X. Zhang, (2021) “Effect of TiB2 Addition on Microstructure and Mechanical Properties of a Hypereutectic High Chromium Cast Iron" Journal of Materials Science 56: 19047–19059. DOI: 10.1007/s10853-021-06429-5.