Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Sergio D. Rosales-Anzola1This email address is being protected from spambots. You need JavaScript enabled to view it. and German Urbina-Villalba2

1Departamento de Energía y Automatización, Universidad Metropolitana (UNIMET), Caracas, 1073, Venezuela

2Centro de Física, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, 21827, Venezuela


 

 

Received: December 29, 2023
Accepted: February 18, 2024
Publication Date: May 4, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202503_28(3).0003  


The selection of the state equation and adsorption isotherm is based on the fit between the theoretical and experimental values of surface tension. From this, properties such as surface concentration (Γ) are calculated, which is necessary for determining the surfactant concentration needed to cover a given surface area. An incorrect calculation of the property above could lead to a mischaracterization of a formulation and possibly to the detriment of the surfactant’s performance due to a possible underestimation of ϵ0. Consequently, many of the conclusions that could be drawn from a study may need to improve the analysis of results due to the value of the surface concentration which is not closest to the real one. A necessary condition that a state equation and an adsorption isotherm must meet is the prediction of surface tension values. However, this is not a sufficient condition, which is obtained by comparing the values of elasticity at infinity with those predicted by the state equation and adsorption isotherm. How the state equation and the adsorption isotherm are chosen is essential in analyzing interfacial phenomena. This work presents the methodology to select the state equation and adsorption isotherm based on predicting surface tension values and elasticity at infinite frequency, ϵ0.

 


Keywords: surface tension; state equation; adsorption isotherm; elasticity at infinite frequency


  1. [1] I. Rivas, A. J. Castellanos-Suárez, M. García-Sucre, E. Lopez, S. D. Rosales-Anzola, and G. Urbina-Villalba. “Surface dilational viscoelasticity of surfactants”. In: Topics in the Colloidal Aggregation and Interfacial Phenomena. Ed. by M. García-Sucre, A. J. CastellanosSuarez, and J. Toro-Mendoza. Research Signpost, 2012, 201–223.
  2. [2] Z. Briceño-Ahumada and D. Langevin, (2017) “On the influence of surfactant on the coarsening of aqueous foams" Advances in Colloid and Interface Science 244: 124–131. DOI: https: //doi.org/10.1016/j.cis.2015.11.005
  3. [3] J. Lucassen and M. Van Den Tempel, (1972) “Dynamic measurements of dilational properties of a liquid interface" Chemical Engineering Science 27(6): 1283– 1291. DOI: https: //doi.org/10.1016/0009-2509(72)80104-0.
  4. [4] Y. Jayalakshmi, L. Ozanne, and D. Langevin, (1995) “Viscoelasticity of Surfactant Monolayers" Journal of Colloid and Interface Science 170(2): 358–366. DOI: https://doi.org/10.1006/jcis.1995.1113.
  5. [5] C. Stubenrauch and R. Miller, (2004) “Stability of Foam Films and Surface Rheology: An Oscillating Bubble Study at Low Frequencies" The Journal of Physical Chemistry B 108(20): 6412–6421. DOI: 10.1021/jp049694e.
  6. [6] E. Santini, F. Ravera, M. Ferrari, C. Stubenrauch, A. Makievski, and J. Krägel, (2007) “A surface rheological study of non-ionic surfactants at the water–air interface and the stability of the corresponding thin foam films" Colloids and Surfaces A: Physicochemical and Engineering Aspects 298(1): 12–21. DOI: https: //doi.org/10.1016/j.colsurfa.2006.12.004.
  7. [7] E. Lucassen-Reynders, A. Cagna, and J. Lucassen, (2001) “Gibbs elasticity, surface dilational modulus and diffusional relaxation in nonionic surfactant monolayers" Colloids and Surfaces A: Physicochemical and Engineering Aspects 186(1): 63–72. DOI: https: //doi.org/10.1016/S0927-7757(01)00483-6.
  8. [8] E. Aksenenko. “7. Software tools to interpret the thermodynamics and kinetics of surfactant adsorption”. In: Surfactants. Ed. by V. Fainerman, D. Möbius, and R. Miller. 13. Studies in Interface Science. Elsevier, 2001, 619–648. DOI: https: //doi.org/10.1016/S1383-7303(01)80068-5.
  9. [9] D. Grigoriev and C. Stubenrauch, (2007) “Surface elasticities of aqueous β − dodecyl − D − maltosidesolutions : Acapillarywavestudy” Colloids and Surfaces A: Physicochemical and Engineering Aspects 296(1): 67–75. DOI: https: //doi.org/10.1016/j.colsurfa.2006.09.025.
  10. [10] J. Boos, N. Preisig, and C. Stubenrauch, (2013) “Dilational surface rheology studies of n-dodecyl-β-d-maltoside, hexaoxyethylene dodecyl ether, and their 1:1 mixture" Advances in Colloid and Interface Science 197-198: 108–117. DOI: 10.1016/j.cis.2013.05.001.
  11. [11] W. Xiang, B. Tardy, L. Bai, C. Stubenrauch, and O. J. Rojas. “Chapter 12 - Measuring the Interfacial Behavior of Sugar-Based Surfactants to Link Molecular Structure and Uses”. In: Biobased Surfactants (Second Edition). Ed. by D. G. Hayes, D. K. Solaiman, and R. D. Ashby. Second Edition. AOCS Press, 2019, 387–412. DOI: 10.1016/B978-0-12-812705-6.00012-5.
  12. [12] V. Fainerman, E. Lucassen-Reynders, and R. Miller, (1998) “Adsorption of surfactants and proteins at fluid interfaces" Colloids and Surfaces A: Physicochemical and Engineering Aspects 143(2): 141–165. DOI: https: //doi.org/10.1016/S0927-7757(98)00585-8.
  13. [13] V. Fainerman and R. Miller. “2. Thermodynamics of adsorption of surfactants at the fluid interfaces”. In: Surfactants. Ed. by V. Fainerman, D. Möbius, and R. Miller. 13. Studies in Interface Science. Elsevier, 2001, 99–188. DOI: https: //doi.org/10.1016/S1383-7303(01)80063-6.
  14. [14] V. Fainerman, R. Miller, E. Aksenenko, and A. Makievski. “3. Equilibrium adsorption properties of single and mixed surfactant solutions”. In: Surfactants. Ed. by V. Fainerman, D. Möbius, and R. Miller. 13. Studies in Interface Science. Elsevier, 2001, 189– 285. DOI: https: //doi.org/10.1016/S1383-7303(01)80064-8
  15. [15] A. Frumkin, (1925) Zeitschrift für Physikalische Chemie 116U(1): 466–484. DOI: doi:10.1515/zpch1925-11629.
  16. [16] V. Fainerman, S. Zholob, J. Petkov, and R. Miller, (2008) “C14EO8 adsorption characteristics studied by drop and bubble profile tensiometry" Colloids and Surfaces A: Physicochemical and Engineering Aspects 323(1): 56–62. DOI: https: //doi.org/10.1016/j.colsurfa.2007.09.019.
  17. [17] U. Gehlert and D. Vollhardt, (2002) “Molecular Packing and Textures of 1-Stearylamine-rac-glycerol Monolayers" Langmuir 18(3): 688–693. DOI: 10.1021/la010867q.
  18. [18] V. B. Fainerman, R. Miller, and V. I. Kovalchuk, (2002) “Influence of the Compressibility of Adsorbed Layers on the Surface Dilational Elasticity" Langmuir 18(20): 7748–7752. DOI: 10.1021/la020024e.
  19. [19] V. B. Fainerman, R. Miller, and V. I. Kovalchuk, (2003) “Influence of the Two-Dimensional Compressibility on the Surface Pressure Isotherm and Dilational Elasticity of Dodecyldimethylphosphine Oxide" The Journal of Physical Chemistry B 107(25): 6119–6121. DOI: 10.1021/jp021876q.
  20. [20] V. B. Fainerman, V. I. Kovalchuk, E. V. Aksenenko, M. Michel, M. E. Leser, and R. Miller, (2004) “Models of Two-Dimensional Solution Assuming the Internal Compressibility of Adsorbed Molecules: A Comparative Anaysis" The Journal of Physical Chemistry B 108(36): 13700–13705. DOI: 10.1021/jp049120+.
  21. [21] V. B. Fainerman and R. Miller, (1996) “Surface Tension Isotherms for Surfactant Adsorption Layers Including Surface Aggregation" Langmuir 12(25): 6011–6014. DOI: 10.1021/la960457f.
  22. [22] E. V. Aksenenko, V. B. Fainerman, and R. Miller, (1998) “Dynamics of Surfactant Adsorption from Solution Considering Aggregation within the Adsorption Layer" The Journal of Physical Chemistry B 102(31): 6025–6028. DOI: 10.1021/jp980664j.
  23. [23] V. Fainerman, R. Miller, E. Aksenenko, A. Makievski, J. Krägel, G. Loglio, and L. Liggieri, (2000) “Effect of surfactant interfacial orientation/aggregation on adsorption dynamics" Advances in Colloid and Interface Science 86(1): 83–101. DOI: https: //doi.org/10.1016/S0001-8686(00)00033-6
  24. [24] V. B. Fainerman, R. Miller, R. Wüstneck, and A. V. Makievski, (1996) “Adsorption Isotherm and Surface Tension Equation for a Surfactant with Changing Partial Molar Area. 1. Ideal Surface Layer" The Journal of Physical Chemistry 100(18): 7669–7675. DOI: 10.1021/jp960148y.
  25. [25] V. B. Fainerman, R. Miller, and R. Wüstneck, (1997) “Adsorption Isotherm and Surface Tension Equation for a Surfactant with Changing Partial Molar Area. 2. Nonideal Surface Layer" The Journal of Physical Chemistry B 101(33): 6479–6483. DOI: 10.1021/jp970746s.
  26. [26] R. Miller, E. Aksenenko, and V. Fainerman, (2001) “The Elasticity of Adsorption Layers of Reorientable Surfactants" Journal of Colloid and Interface Science 236(1): 35–40. DOI: https: //doi.org/10.1006/jcis.2000.7386.
  27. [27] S. D. Rosales-Anzola, M. García-Sucre, G. UrbinaVillalba, and E. Lopez. “Surface dilational viscoelasticity of surfactants”. In: Topics in the Colloidal Aggregation and Interfacial Phenomena. Ed. by M. García-Sucre, A. J. Castellanos-Suarez, and J. Toro-Mendoza. Research Signpost, 2012, 201–223.
  28. [28] V. Fainerman, S. Lylyk, E. Aksenenko, A. Makievski, J. Petkov, J. Yorke, and R. Miller, (2009) “Adsorption layer characteristics of Triton surfactants: 1. Surface tension and adsorption isotherms" Colloids and Surfaces A: Physicochemical and Engineering Aspects 334(1): 1–7. DOI: https: //doi.org/10.1016/j.colsurfa.2008.09.015.  
  29. [29] R. Bois, I. Pezron, and A. Nesterenko, (2020) “Dynamic interfacial properties of sugar-based surfactants: Experimental study and modeling" Colloid and Interface Science Communications 37: 100293. DOI: https: //doi.org/10.1016/j.colcom.2020.100293.
  30. [30] C. Stubenrauch, V. B. Fainerman, E. V. Aksenenko, and R. Miller, (2005) “Adsorption Behavior and Dilational Rheology of the Cationic Alkyl Trimethylammonium Bromides at the Water/Air Interface" The Journal of Physical Chemistry B 109(4): 1505–1509. DOI: 10.1021/jp046525l.
  31. [31] V. I. Kovalchuk, E. V. Aksenenko, E. Schneck, and R. Miller, (2023) “Surfactant Adsorption Layers: Experiments and Modeling" Langmuir 39(10): 3537–3545. DOI: 10.1021/acs.langmuir.2c03511.
  32. [32] M. Vrânceanu, K. Winkler, H. Nirschl, and G. Leneweit, (2007) “Surface rheology of monolayers of phospholipids and cholesterol measured with axisymmetric drop shape analysis" Colloids and Surfaces A: Physicochemical and Engineering Aspects 311(1): 140–153. DOI: https: //doi.org/10.1016/j.colsurfa.2007.06.008.
  33. [33] G. Loglio, P. Pandolfini, A. Makievski, and R. Miller, (2003) “Calibration parameters of the pendant drop tensiometer: assessment of accuracy" Journal of Colloid and Interface Science 265(1): 161–165. DOI: https: //doi.org/10.1016/S0021-9797(03)00138-3
  34. [34] G. Loglio, P. Pandolfini, R. Miller, A. Makievski, J. Krägel, and F. Ravera, (2004) “Oscillation of interfacial properties in liquid systems: assessment of harmonic distortion" Phys. Chem. Chem. Phys. 6: 1375–1379. DOI: 10.1039/B314592C.
  35. [35] S. I. Karakashev and A. V. Nguyen, (2009) “The importance of aspect ratio in profile analysis tensiometry" Journal of Colloid and Interface Science 330(2): 501–504. DOI: https: //doi.org/10.1016/j.jcis.2008.11.034