Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Kieu Do Trung Kien1,2This email address is being protected from spambots. You need JavaScript enabled to view it. , Do Quang Minh1,2, Huynh Ngoc Minh1,2, and Nguyen Vu Uyen Nhi1,2

1Department of Silicate Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City, Vietnam

2Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam


 

 

Received: February 7, 2024
Accepted: April 1, 2024
Publication Date: May 4, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202503_28(3).0004  


Materials exhibiting photocatalytic properties have garnered considerable attention for diverse applications, including degrading toxic organic compounds, disinfection, and developing self-cleaning surfaces. This study focuses on the synthesis of coatings based on TiO2 and TiO2-SiO2, accomplished through the sol–gel method using Tetra-n-butyl ortho titanate and Tetraethyl orthosilicate precursors, followed by calcination at 500C. The phase compositions of the resulting coatings were assessed using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The band gap energy was quantified through UV-Vis spectroscopy. The photocatalytic efficacy was examined by assessing the inhibition of Escherichia coli bacteria and the decomposition of the methylene blue solution. The adhesive capability of the coating to the ceramic tile substrate was evaluated via scanning electron microscopy. The outcomes reveal that the primary phase components of the coatings consist of anatase and rutile. The introduction of SiO2 in conjunction with TiO2 demonstrates a mitigating effect on the photocatalytic performance and organic matter decomposition compared to pure TiO2. Nevertheless, this reduction is marginal, and SiO2 positively influences enhancing the adhesion of the TiO2 coating to the ceramic substrate material.

 


Keywords: TiO2; TiO2-SiO2; photocatalyst; antimicrobial application


  1. [1] S. Saini, P. Basera, M. Kumar, P. Bhumla, and S. Bhattacharya, (2020) “Metastability triggered reactivity in clusters at realistic conditions: a case study of N-doped (TiO2) n for photocatalysis" Journal of Physics: Materials 4(1): 015001.
  2. [2] A. Fujishima, (1969) “Photosensitized electrolytic oxidation on semiconducting n-type TiO_2 electrode" Kogyo Kagaku Zasshi 72: 108–113.
  3. [3] H. Sakai, R. Baba, K. Hashimoto, A. Fujishima, and A. Heller, (1995) “Local Detection of Photoelectrochemically Produced H2O2 with a" Wired" Horseradish Peroxidase Microsensor" The Journal of Physical Chemistry 99(31): 11896–11900.
  4. [4] A. Brindha and T. Sivakumar, (2017) “Visible active N, S co-doped TiO2/graphene photocatalysts for the degradation of hazardous dyes" Journal of Photochemistry and Photobiology A: Chemistry 340: 146–156.
  5. [5] Y. Luo, A. Benali, L. Shulenburger, J. T. Krogel, O. Heinonen, and P. R. Kent, (2016) “Phase stability of TiO2 polymorphs from diffusion Quantum Monte Carlo" New Journal of Physics 18(11): 113049.
  6. [6] X. Qi, L. Fu, R. Du, H. Gu, D. Chen, S. Yang, A. Huang, and R. Lv, (2023) “Properties of various CaOAl2O3-TiO2 refractories and their reaction behaviours in contact with Ti6Al4V melts" Journal of Alloys and Compounds 959: 170599.
  7. [7] J. George, C. Gopalakrishnan, P. Manikuttan, K. Mukesh, and S. Sreenish, (2021) “Preparation of multipurpose TiO2 pigment with improved properties for coating applications" Powder technology 377: 269–273.
  8. [8] Y.-Q. Wang, L. Gu, Y.-G. Guo, H. Li, X.-Q. He, S. Tsukimoto, Y. Ikuhara, and L.-J. Wan, (2012) “RutileTiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery" Journal of the American Chemical Society 134(18): 7874–7879.
  9. [9] A. E. Kabeel, R. Sathyamurthy, S. W. Sharshir, A. Muthumanokar, H. Panchal, N. Prakash, C. Prasad, S. Nandakumar, and M. El Kady, (2019) “Effect of water depth on a novel absorber plate of pyramid solar still coated with TiO2 nano black paint" Journal of cleaner production 213: 185–191.
  10. [10] Y. Liang and H. Ding, (2020) “Mineral-TiO2 composites: Preparation and application in papermaking, paints and plastics" Journal of Alloys and Compounds 844: 156139.
  11. [11] S. Teixeira and A. M. Bernardin, (2009) “Development of TiO2 white glazes for ceramic tiles" Dyes and Pigments 80(3): 292–296.
  12. [12] Y. Yu, W. Cui, L. Song, Q. Liao, K. Ma, S. Zhong, H. Yue, and B. Liang, (2022) “Design of organic-free superhydrophobic TiO2 with ultraviolet stability or ultravioletinduced switchable wettability" ACS Applied Materials & Interfaces 14(7): 9864–9872.
  13. [13] X. Zhang and L. Lei, (2008) “Preparation of photocatalytic Fe2O3–TiO2 coatings in one step by metal organic chemical vapor deposition" Applied Surface Science 254(8): 2406–2412.
  14. [14] N. R. Neti and P. Joshi, (2010) “Cellulose reinforced-TiO 2 photocatalyst coating on acrylic plastic for degradation of reactive dyes" Journal of coatings technology and research 7: 643–650.
  15. [15] K. D. T. Kien, N. V. U. Nhi, H. N. Minh, and D. Q. Minh, (2022) “Optical properties of the Bi2O3-B2O3- ZnO glass system combined with TiO2 or Ag/TiO2" Journal of Ceramic Processing Research 23(3): 350–355.
  16. [16] K. D. T. Kien, D. Q. Minh, H. N. Minh, and N. V. U. Nhi, (2023) “SYNTHESIS OF TiO2–SiO2 FROM TETRA-N-BUTYL ORTHOTITANATE AND TETRAETHYL ORTHOSILICATE BY THE SOL-GEL METHOD APPLIED AS A COATING ON THE SURFACE OF CERAMICS" Ceramics–Silikáty 67(1): 58–63.
  17. [17] P. George and P. Chowdhury, (2019) “Complex dielectric transformation of UV-vis diffuse reflectance spectra for estimating optical band-gap energies and materials classification" Analyst 144(9): 3005–3012.
  18. [18] Ö. B. Mergen and E. Arda, (2020) “Determination of optical band gap energies of CS/MWCNT bionanocomposites by Tauc and ASF methods" Synthetic Metals 269: 116539.
  19. [19] O. Sallam, A. Madbouly, N. Elalaily, and F. Ezz-Eldin, (2020) “Physical properties and radiation shielding parameters of bismuth borate glasses doped transition metals" Journal of Alloys and Compounds 843: 156056.
  20. [20] A. Agarwal, V. Seth, S. Sanghi, P. Gahlot, and D. Goyal, (2003) “Optical band gap studies and estimation of two photon absorption coefficient in alkali bismuth borate glasses" Radiation effects and defects in solids 158(11-12): 793–801.
  21. [21] A. L. Smith, (1960) “Infrared spectra-structure correlations for organosilicon compounds" Spectrochimica Acta 16(1-2): 87–105.
  22. [22] J. Ren, Z. Li, S. Liu, Y. Xing, and K. Xie, (2008) “Silica– titania mixed oxides: Si–O–Ti connectivity, coordination of titanium, and surface acidic properties" Catalysis Letters 124: 185–194.
  23. [23] V. A. Zeitler and C. A. Brown, (1957) “The Infrared Spectra of Some Ti-O-Si, Ti-O-Ti and Si-O-Si Compounds" The Journal of Physical Chemistry 61(9): 1174–1177.
  24. [24] A. Bronson and J. Chessa, (2008) “An evaluation of vaporizing rates of SiO2 and TiO2 as protective coatings for ultrahigh temperature ceramic composites" Journal of the American Ceramic Society 91(5): 1448–1452.
  25. [25] K. D. T. Kien, N. V. U. Nhi, H. N. Minh, and D. Q. Minh, (2022) “Optical properties of the Bi2O3-B2O3- ZnO glass system combined with TiO2 or Ag/TiO2" Journal of Ceramic Processing Research 23(3): 350–355.
  26. [26] C. Byrne, S. Rhatigan, D. Hermosilla, N. Merayo, Á. Blanco, M. C. Michel, S. Hinder, M. Nolan, and S. C. Pillai, (2019) “Modification of TiO2 with hBN: high temperature anatase phase stabilisation and photocatalytic degradation of 1, 4-dioxane" Journal of Physics: Materials 3(1): 015009.
  27. [27] S.-J. Kim and K. Ogino, (2019) “Synthesis of TiO2 nanoparticles using titanium tetraisopropoxide and starch" Journal of Ceramic Processing Research 20(6): 665–669.
  28. [28] J. ZHANG, Y. Song, F. Lu, W. Fei, Y. Mengqiong, L. Genxiang, X. Qian, W. Xiang, and L. Can, (2011) “Photocatalytic degradation of rhodamine B on anatase, rutile, and brookite TiO2" Chinese Journal of Catalysis 32(6- 8): 983–991.
  29. [29] B. Avinash, V. Chaturmukha, H. Jayanna, C. Naveen, M. Rajeeva, B. Harish, S. Suresh, and A. R. Lamani. “Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial”. In: AIP conference proceedings. 1728. 1. AIP Publishing. 2016.
  30. [30] R. Mechiakh, N. B. Sedrine, R. Chtourou, and R. Bensaha, (2010) “Correlation between microstructure and optical properties of nano-crystalline TiO2 thin films prepared by sol–gel dip coating" Applied Surface Science 257(3): 670–676.


    



 

1.6
2022CiteScore
 
 
60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.