Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Yu JiangThis email address is being protected from spambots. You need JavaScript enabled to view it.

Shenyang Normal University, ShenYang, China


 

 

Received: January 1, 2024
Accepted: March 27, 2024
Publication Date: March 2, 2024

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202412_27(12).0013  


With the advancement of artificial intelligence, intelligent robots, equipped with capabilities such as autonomous perception, learning adaptability, autonomous decision-making, and human-machine interaction, are widely deployed across various industries. In this paper, an acoustic signal analysis within the deep encoding-decoding architecture is devised for intelligent robot anomaly detection (DAD-IR-ASR), which comprises acoustic signal data preprocessing of intelligent robot, deep encoding-decoding architecture, accumulation-based anomaly detection. Specifically, DAD-IR-ASR designs an acoustic sensor collection device to collect acoustic signal data of robots. Subsequently, it utilizes Fourier transformation and filters to extract meaningful spectral features. Simultaneously, it designs a deep encoding-decoding architecture, employing unsupervised reconstruction training solely with normal data to adaptively learn an error threshold. Furthermore, DAD-IR-ASR conducts an accumulation-based anomaly detection strategy to determine if the intelligent robot is anomalous by comparing the cumulative sum of reconstruction errors within deep encoding-decoding architecture. Finally, the effectiveness of DAD-IR-ASR is demonstrated through comparisons with multiple existing unsupervised detection methods in intelligent robot anomaly detection task.


Keywords: Artificial intelligence; intelligent robots; deep anomaly detection


  1. [1] S. Yin, (2023) “Object Detection Based on Deep Learning: A Brief Review" IJLAI Transactions on Science and Engineering 1(02): 1–6.
  2. [2] J. Gao, M. Liu, P. Li, J. N. Zhang, and Z. K. Chen, (2023) “Deep Multiview Adaptive Clustering With Semantic Invariance" IEEE Trans. Neural Netw. Learn. Syst. DOI: 10.1109/TNNLS.2023.3265699.
  3. [3] P. Li, A. A. Laghari, M. Rashid, J. Gao, T. R. Gadekallu, A. R. Javed, and S. Yin, (2023) “A Deep Multimodal Adversarial Cycle-Consistent Network for Smart Enterprise System" IEEE Transactions on Industrial Informatics 19(1): 693–702. DOI: 10.1109/TII.2022.3197201.
  4. [4] I. Kotenko, K. Izrailov, and M. Buinevich, (2022) “Static analysis of information systems for IoT cyber security: a survey of machine learning approaches" Sensors 22(4): 1335. DOI: 10.3390/s22041335.
  5. [5] P. Li, J. Gao, J. N. Zhang, S. Jin, and Z. K. Chen, (2022) “Deep Reinforcement Clustering" IEEE Trans. Multimedia: DOI: 10.1109/TMM.2022.3233249.
  6. [6] L. Teng, (2023) “Brief Review of Medical Image Segmentation Based on Deep Learning" IJLAI Transactions on Science and Engineering 1(02): 01–08.
  7. [7] M. Mukhasheva, K. Ybyraimzhanov, K. Naubaeva, A. Mamekova, and B. Almukhambetova, (2023) “The Impact of Educational Robotics on Cognitive Outcomes in Primary Students: A Meta-Analysis of Recent Studies." European Journal of Educational Research 12(4): DOI: 10.12973/eu-jer.12.4.1683.
  8. [8] A. Modli´nski, P. Fortuna, and B. Roznowski, (2023) ˙ “Human–machine trans roles conflict in the organization: How sensitive are customers to intelligent robots replacing the human workforce?" International Journal of Consumer Studies 47(1): 100–117. DOI: 10.1111/ijcs.12811.
  9. [9] H. Alemzadeh, D. Chen, X. Li, T. Kesavadas, Z. T. Kalbarczyk, and R. K. Iyer. “Targeted attacks on teleoperated surgical robots: Dynamic model-based detection and mitigation”. In: 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE. 2016, 395–406. DOI: 10.1109/DSN.2016.43.
  10. [10] Y. Tang, D. Zhang, D. W. Ho, W. Yang, and B. Wang, (2018) “Event-based tracking control of mobile robot with denial-of-service attacks" IEEE Transactions on Systems, Man, and Cybernetics: Systems 50(9): 3300–3310. DOI: 10.1109/TSMC.2018.2875793.
  11. [11] C. Zhou, B. Hu, Y. Shi, Y.-C. Tian, X. Li, and Y. Zhao, (2020) “A unified architectural approach for cyberattackresilient industrial control systems" Proceedings of the IEEE 109(4): 517–541. DOI: 10.1109/JPROC.2020.3034595.
  12. [12] E. Khalastchi, M. Kalech, G. A. Kaminka, and R. Lin, (2015) “Online data-driven anomaly detection in autonomous robots" Knowledge and Information Systems 43: 657–688. DOI: 10.1007/s10115-014-0754-y.
  13. [13] F. Angiulli and C. Pizzuti. “Fast outlier detection in high dimensional spaces”. In: European conference on principles of data mining and knowledge discovery. Springer. 2002, 15–27. DOI: 10.1007/3-540-45681-3_2.
  14. [14] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei, Y. Feng, et al. “Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications”. In: Proceedings of the 2018 world wide web conference. 2018, 187–196. DOI: 10.1145/3178876.3185996.
  15. [15] C. Zhou, S. Huang, N. Xiong, S.-H. Yang, H. Li, Y. Qin, and X. Li, (2015) “Design and analysis of multimodelbased anomaly intrusion detection systems in industrial process automation" IEEE Transactions on Systems, Man, and Cybernetics: Systems 45(10): 1345–1360. DOI: 10.1109/TSMC.2015.2415763.
  16. [16] A. A. Jaber and R. Bicker, (2016) “Industrial robot fault detection based on statistical control chart" Am. J. Eng. Applied Sci 9: 251–263.
  17. [17] V. Sathish, S. Ramaswamy, and S. Butail, (2016) “Training data selection criteria for detecting failures in industrial robots" IFAC-PapersOnLine 49(1): 385–390. DOI: 10.1016/j.ifacol.2016.03.084.
  18. [18] Y. Zhao and C. Smidts, (2020) “A control-theoretic approach to detecting and distinguishing replay attacks from other anomalies in nuclear power plants" Progress in Nuclear Energy 123: 103315. DOI: 10.1016/j.pnucene.2020.103315.
  19. [19] W. Zhu, W. Li, H. Liao, and J. Luo, (2021) “Temperature network for few-shot learning with distribution-aware large-margin metric" Pattern Recognition 112: 107797. DOI: 10.1016/j.patcog.2020.107797.
  20. [20] Y. Zhou, L. Xie, and H. Pan, (2022) “Research on a PSOH-SVM-Based Intrusion Detection Method for Industrial Robotic Arms" Applied Sciences 12(6): 2765. DOI: 10.3390/app12062765.
  21. [21] J. Inoue, Y. Yamagata, Y. Chen, C. M. Poskitt, and J. Sun. “Anomaly detection for a water treatment system using unsupervised machine learning”. In: 2017 IEEE international conference on data mining workshops (ICDMW). IEEE. 2017, 1058–1065. DOI: 10.1109/ICDMW.2017.149.
  22. [22] Ö. Gültekin, E. Cinar, K. Özkan, and A. Yazıcı, (2022) “Real-time fault detection and condition monitoring for industrial autonomous transfer vehicles utilizing edge artificial intelligence" Sensors 22(9): 3208. DOI: 10.3390/s22093208.
  23. [23] A. Munawar, P. Vinayavekhin, and G. De Magistris. “Spatio-temporal anomaly detection for industrial robots through prediction in unsupervised feature space”. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE. 2017, 1017–1025. DOI: 10.1109/WACV.2017.118.
  24. [24] M. Said Elsayed, N.-A. Le-Khac, S. Dev, and A. D. Jurcut. “Network anomaly detection using LSTM based autoencoder”. In: Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks. 2020, 37–45. DOI: 10.1145/3416013.3426457.
  25. [25] L. Mhamdi, D. McLernon, F. El-Moussa, S. A. R. Zaidi, M. Ghogho, and T. Tang. “A deep learning approach combining autoencoder with one-class SVM for DDoS attack detection in SDNs”. In: 2020 IEEE Eighth International Conference on Communications and Networking (ComNet). IEEE. 2020, 1–6. DOI: 10.1109/ComNet47917.2020.9306073.
  26. [26] A. Binbusayyis and T. Vaiyapuri, (2021) “Unsupervised deep learning approach for network intrusion detection combining convolutional autoencoder and one-class SVM" Applied Intelligence 51(10): 7094–7108. DOI: 10.1007/s10489-021-02205-9.
  27. [27] E. Mushtaq, A. Zameer, M. Umer, and A. A. Abbasi, (2022) “A two-stage intrusion detection system with autoencoder and LSTMs" Applied Soft Computing 121: 108768. DOI: 10.1016/j.asoc.2022.108768.
  28. [28] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soderstrom. “Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding”. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. 2018, 387–395. DOI: 10.1145/3219819.3219845.
  29. [29] C. Yukawa, K. Toyoshima, Y. Nagai, M. Niihara, Y. Yamashita, T. Oda, and L. Barolli. “An Anomaly Detection System for Intelligent Robot Vision Using LSTM”. In: International Conference on Advanced Information Networking and Applications. Springer. 2023, 192–198. DOI: 10.1007/978-3-031-28451-9_17.
  30. [30] Z. Liu, Y. Hou, H. Tang, Á. López-Chilet, S. Michiels, D. Botteldooren, J. A. Gómez, and D. Hughes. “CLF-AIAD: A Contrastive Learning Framework for Acoustic Industrial Anomaly Detection”. In: International Conference on Neural Information Processing. 2023, 125–137. DOI: 10.1007/978-981-99-8126-7_10.
  31. [31] K. S. Sankaran and B.-H. Kim, (2023) “Deep learning based energy efficient optimal RMC-CNN model for secured data transmission and anomaly detection in industrial IOT" Sustainable Energy Technologies and Assessments 56: 102983. DOI: 10.1016/j.seta.2022.102983.