Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

A. Ginting1This email address is being protected from spambots. You need JavaScript enabled to view it., M. Nouari2, and H. Makich2

1Laboratory of Machining Processes, Department of Mechanical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Jalan Almamater, J17.01.01, 20155 Medan, Indonesia

2University of Lorraine, LEM3 UMR CNRS 7329, Institute Mines-Telecom, GIP-InSIC, 27 rue d’Hellieule, 88100 Saint-Dié-des-Vosges, France


 

 

Received: June 26, 2023
Accepted: October 23, 2023
Publication Date: December 6, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202409_27(9).0006  


Nickel-based superalloy Inconel 718 is widely used in the aerospace industry for applications requiring high temperature strength and high mechanical resistance. The difficulty of dislocation motion through the microstructure is responsible for its high yield strength. The main problems encountered when machining Inconel 718 are low material removal rate, short tool life and residual stress effects. An experimental investigation was carried out to determine the correlation between tool wear and residual stresses induced in turning of Inconel 718. A series of turning tests was performed without lubrication and K-Carbide grade was used as the insert material with various coatings composed of TiCN, Al2O3 and TiN. The cutting forces, surface finish, and tool wear are presented according to the effect of cutting conditions. This investigation allows to capture the effect of tool wear on the process induced residual stresses in the work material surface in hard machining.


Keywords: Residual stress, Surface finish, Turning, Tool wear


  1. [1] E. O. Ezugwu, J. Bonney, and Y. Yamane, (2003) “An overview of the machinability of aeroengine alloys" Journal of Materials Processing Technology 134: DOI: 10.1016/S0924-0136(02)01042-7.
  2. [2] D. Dudzinski, A. Devillez, A. Moufki, D. Larrouquère, V. Zerrouki, and J. Vigneau, (2004) “A review of developments towards dry and high speed ma- (a) Vc 40 m/min, f 0.35 mm/rev. (b) Vc 70 m/min, f 0.35 mm/rev. (c) Vc 100 m/min, f 0.35 mm/rev. Fig. 20. Tool wear localization at the rake face. chining of Inconel 718 alloy" International Journal of Machine Tools and Manufacture 44: DOI: 10.1016/ S0890-6955(03)00159-7.
  3. [3] M. Field, (1971) “REVIEW OF SURFACE INTEGRITY OF MACHINED COMPONENTS." Ann CIRP 20:
  4. [4] Y. B. Guo, W. Li, and I. S. Jawahir, (2009) “Surface integrity characterization and prediction in machining of hardened and difficult-to-machine alloys: A state-of-art research review and analysis" Machining Science and Technology 13: DOI: 10.1080/10910340903454922.
  5. [5] D. Ulutan and T. Ozel. Machining induced surface integrity in titanium and nickel alloys: A review. 2011. DOI: 10.1016/j.ijmachtools.2010.11.003.
  6. [6] A. Thakur and S. Gangopadhyay. State-of-the-art in surface integrity in machining of nickel-based super alloys. 2016. DOI: 10.1016/j.ijmachtools.2015.10.001.
  7. [7] X. Liang, Z. Liu, and B. Wang. State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys: A review. 2019. DOI: 10.1016/j.measurement.2018.09.045.
  8. [8] B. Toubhans, G. Fromentin, F. Viprey, H. Karaouni, and T. Dorlin, (2020) “Machinability of inconel 718 during turning: Cutting force model considering tool wear, influence on surface integrity" Journal of Materials Processing Technology 285: DOI: 10.1016/j.jmatprotec.2020.116809.
  9. [9] Y. Liu, D. Xu, M. Agmell, R. M. Saoubi, A. Ahadi, J. E. Stahl, and J. Zhou, (2021) “Numerical and experimental investigation of tool geometry effect on residual stresses in orthogonal machining of Inconel 718" Simulation Modelling Practice and Theory 106: DOI: 10.1016/j.simpat.2020.102187.
  10. [10] Y. Liu, D. Xu, M. Agmell, A. Ahadi, J. E. Stahl, and J. Zhou, (2021) “Investigation on residual stress evolution in nickel-based alloy affected by multiple cutting operations" Journal of Manufacturing Processes 68: DOI: 10.1016/j.jmapro.2021.06.015.
  11. [11] A. H. Elsheikh, S. Shanmugan, T. Muthuramalingam, A. K. Thakur, F. A. Essa, A. M. M. Ibrahim, and A. O. Mosleh, (2022) “A comprehensive review on residual stresses in turning" Advances in Manufacturing 10: DOI: 10.1007/s40436-021-00371-0.
  12. [12] A. Madariaga, A. Garay, J. A. Esnaola, P. J. Arrazola, and A. Linaza, (2022) “Effect of surface integrity generated by machining on isothermal low cycle fatigue performance of Inconel 718" Engineering Failure Analysis 137: DOI: 10.1016/j.engfailanal.2022.106422.
  13. [13] A. D. Bartolomeis, S. T. Newman, I. S. Jawahir, D. Biermann, and A. Shokrani. Future research directions in the machining of Inconel 718. 2021. DOI: 10.1016/j.jmatprotec.2021.117260.
  14. [14] E. Capello, (2005) “Residual stresses in turning: Part I: Influence of process parameters" Journal of Materials Processing Technology 160: DOI: 10.1016/j.jmatprotec.2004.06.012.
  15. [15] B. Denkena, D. Boehnke, and L. León, (2008) “Machining induced residual stress in structural aluminum parts" Production Engineering 2: DOI: 10.1007/s11740-008-0097-1.
  16. [16] J. D. Thiele and S. N. Melkote, (1999) “Effect of cutting edge geometry and workpiece hardness on surface generation in the finish hard turning of AISI 52100 steel" Journal of Materials Processing Technology 94: DOI: 10.1016/S0924-0136(99)00111-9.
  17. [17] M. Jacobson. “Surface integrity of hard-turned M50 steel”. In: 216. 2002. DOI: 10.1243/0954405021519681.
  18. [18] F. Gunnberg, M. Escursell, and M. Jacobson, (2006) “The influence of cutting parameters on residual stresses and surface topography during hard turning of 18MnCr5 case carburised steel" Journal of Materials Processing Technology 174: DOI: 10.1016/j.jmatprotec.2005.02.262.
  19. [19] Y. Matsumoto, F. Hashimoto, and G. Lahoti, (1999) “Surface integrity generated by precision hard turning" CIRP Annals - Manufacturing Technology 48: DOI: 10.1016/S0007-8506(07)63131-X.
  20. [20] E. Capello, P. Davoli, G. Bassanini, and A. Bisi, (1999) “Residual stresses and surface roughness in turning" Journal of Engineering Materials and Technology, Transactions of the ASME 121: DOI: 10.1115/1.2812385.
  21. [21] N. Ordás, M. L. Penalva, J. Fernández, and C. GarcíaRosales, (2003) “Residual stresses in tool steel due to hard-turning" Journal of Applied Crystallography 36: DOI: 10.1107/S0021889803012755.
  22. [22] R. M’Saoubi, (1998) “Aspects thermiques et microstructuraux de la coupe. Application à la coupe orthogonale des aciers austénitiques":
  23. [23] J. Grum and M. Kisin, (2006) “The influence of the microstructure of three Al-Si alloys on the cutting-force amplitude during fine turning" International Journal of Machine Tools and Manufacture 46: DOI: 10.1016/ j.ijmachtools.2005.07.032.
  24. [24] M. H. El-Axir, (2002) “A method of modeling residual stress distribution in turning for different materials" International Journal of Machine Tools and Manufacture 42: DOI: 10.1016/S0890-6955(02)00031-7.
  25. [25] A. H. Elsheikh, T. Muthuramalingam, S. Shanmugan, A. M. M. Ibrahim, B. Ramesh, A. B. Khoshaim, E. B. Moustafa, B. Bedairi, H. Panchal, and R. Sathyamurthy, (2021) “Fine-tuned artificial intelligence model using pigeon optimizer for prediction of residual stresses during turning of Inconel 718" Journal of Materials Research and Technology 15: DOI: 10.1016/j.jmrt.2021.09.119.
  26. [26] A. B. Khoshaim, A. H. Elsheikh, E. B. Moustafa, M. Basha, and A. O. Mosleh, (2021) “Prediction of residual stresses in turning of pure iron using artificial intelligencebased methods" Journal of Materials Research and Technology 11: DOI: 10.1016/j.jmrt.2021.02.042.
  27. [27] A. H. Elsheikh, M. A. Elaziz, S. R. Das, T. Muthuramalingam, and S. Lu, (2021) “A new optimized predictive model based on political optimizer for eco-friendly MQLturning of AISI 4340 alloy with nano-lubricants" Journal of Manufacturing Processes 67: DOI: 10.1016/j.jmapro.2021.05.014.
  28. [28] P. L. B. Oxley and M. C. Shaw, (1990) “Mechanics of Machining: An Analytical Approach to Assessing Machinability" Journal of Applied Mechanics 57: DOI: 10.1115/1.2888318.


    



 

1.6
2022CiteScore
 
 
60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.