- [1] H. Faridi and A. Arabhosseini, (2018) “Application of eggshell wastes as valuable and utilizable products: A review" Research in Agricultural Engineering 64(2): 104–114. DOI: 10.17221/6/2017-RAE.
- [2] S. Owuamanam and D. Cree, (2020) “Progress of biocalcium carbonate waste eggshell and seashell fillers in polymer composites: a review" Journal of Composites Science 4(2): 70. DOI: 10.3390/jcs4020070.
- [3] B. Ngayakamo and A. P. Onwualu, (2022) “Recent advances in green processing technologies for valorisation of eggshell waste for sustainable construction materials" Heliyon: DOI: 10.1016/j.heliyon.2022.e09649.
- [4] E. S. Bhagavatheswaran, A. Das, H. Rastin, H. Saeidi, S. H. Jafari, H. Vahabi, F. Najafi, H. A. Khonakdar, K. Formela, M. Jouyandeh, et al., (2019) “The taste of waste: the edge of eggshell over calcium carbonate in acrylonitrile butadiene rubber" Journal of Polymers and the Environment 27: 2478–2489. DOI: 10.1007/s10924-019-01530-y.
- [5] M. Martin-Luengo, M. Yates, M. Ramos, E. Saez Rojo, A. Martinez Serrano, L. Gonzalez Gil, and E. R. Hitzky, (2011) “Biomaterials from beer manufacture waste for bone growth scaffolds" Green Chemistry Letters and Reviews 4(3): 229–233. DOI: 10.1080/17518253.2010.544331.
- [6] K. Lertchunhakiat, P. Saenphoom, M. Nopparatmaitree, and S. Chimthong, (2016) “Effect of eggshell as a calcium source of breeder cock diet on semen quality" Agriculture and Agricultural Science Procedia 11: 137–142.
- [7] M. Ketta and E. Tumova, (2016) “Eggshell structure, measurements, and quality-affecting factors in laying hens: a review" Czech Journal of Animal Science 61(7): 299–309. DOI: 10.17221/46/2015-CJAS.
- [8] F. S. Murakami, P. O. Rodrigues, C. M. T. d. Campos, and M. A. S. Silva, (2007) “Physicochemical study of CaCO3 from egg shells" Food Science and Technology 27: 658–662.
- [9] M. A. P. Chakraborty. “Chicken Eggshell as Calcium Supplement Tablet”. In: 2016. DOI: 10.2174/ 1389201019666180723103853.
- [10] A. D. Glass, (2003) “Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption" Critical reviews in plant sciences 22(5): 453–470. DOI: 10.1080/07352680390243512.
- [11] B. Hirel, J. Le Gouis, B. Ney, and A. Gallais, (2007) “The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches" Journal of experimental botany 58(9): 2369–2387. DOI: 10.1093/jxb/erm097.
- [12] A. Waqar, K. Hira, B. Ullah, A.-u. Khan, Z. Shah, F. Khan, R. Naz, et al., (2014) “Role of nitrogen fertilizer in crop productivity and environmental pollution." International journal of agriculture and forestry 4(3): 201–206.
- [13] G. W. Randall and D. J. Mulla, (2001) “Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices" Journal of environmental quality 30(2): 337–344. DOI: 10.2134/jeq2001.302337x.
- [14] T. ME Trenkel. Slow-and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Effiiency in Agriculture. International Fertilizer Industry Association (IFA), 2021. DOI: 10.2134/jeq2001.302337x.
- [15] C. Wang, H. Liu, Q. Gao, X. Liu, and Z. Tong, (2008) “Alginate–calcium carbonate porous microparticle hybrid hydrogels with versatile drug loading capabilities and variable mechanical strengths" Carbohydrate Polymers 71(3): 476–480. DOI: 10.1016/j.carbpol.2007.06.018.
- [16] G. Liu, L. Zotarelli, Y. Li, D. Dinkins, Q. Wang, and M. Ozores-Hampton, (2014) “Controlled-release and slowrelease fertilizers as nutrient management tools" USA: US Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS:
- [17] P. Agulhon, M. Robitzer, L. David, and F. Quignard, (2012) “Structural regime identification in ionotropic alginate gels: influence of the cation nature and alginate structure" Biomacromolecules 13(1): 215–220. DOI: 10.1021/bm201477g.
- [18] K. Y. Lee and D. J. Mooney, (2012) “Alginate: properties and biomedical applications" Progress in polymer science 37(1): 106–126. DOI: 10.1016/j.progpolymsci.2011.06.003.
- [19] D. Jain and D. Bar-Shalom, (2014) “Alginate drug delivery systems: application in context of pharmaceutical and biomedical research" Drug development and industrial pharmacy 40(12): 1576–1584. DOI: 10.3109/03639045.2014.917657.
- [20] I. Sathisaran and M. Balasubramanian, (2020) “Physical characterization of chitosan/gelatin-alginate composite beads for controlled release of urea" Heliyon 6(11): DOI: 10.1016/j.heliyon.2020.e05495.
- [21] L. A. Nnamonu, R. Sha’Ato, and I. Onyido, (2012) “Alginate reinforced chitosan and starch beads in slow release formulation of imazaquin herbicide—preparation and characterization":
- [22] S. M. Ibrahim, F. I. Abou El Fadl, and A. A. El-Naggar, (2014) “Preparation and characterization of crosslinked alginate–CMC beads for controlled release of nitrate salt" Journal of Radioanalytical and Nuclear Chemistry 299: 1531–1537. DOI: 10.1007/s10967-013-2820-4.
- [23] P. P. Joshi, A. Van Cleave, D. W. Held, J. A. Howe, and M. L. Auad, (2020) “Preparation of slow release encapsulated insecticide and fertilizer based on superabsorbent polysaccharide microbeads" Journal of Applied Polymer Science 137(39): 49177. DOI: 10.1002/app.49177.
- [24] H. Sun, S. Li, W. Qi, R. Xing, Q. Zou, and X. Yan, (2018) “Stimuli-responsive nanoparticles based on coassembly of naturally-occurring biomacromolecules for in vitro photodynamic therapy" Colloids and Surfaces A: Physicochemical and Engineering Aspects 538: 795–801.
- [25] A. B. Nornberg, V. R. Gehrke, H. P. Mota, E. R. Camargo, and A. R. Fajardo, (2019) “Alginate-cellulose biopolymeric beads as efficient vehicles for encapsulation and slow-release of herbicide" Colloids and Surfaces A: Physicochemical and Engineering Aspects 583: 123970. DOI: 10.1016/j.colsurfa.2019.123970.
- [26] P. L. Hariani, S. Salni, and F. Riyanti. “Combination of CaCO3 and Ca (OH) 2 as agents for treatment acid mine drainage”. In: MATEC Web of Conferences. 101. EDP Sciences. 2017, 02004.
- [27] T. Reddy and S. Tammishetti, (2002) “Gastric resistant microbeads of metal ion cross-linked carboxymethyl guar gum for oral drug delivery" Journal of microencapsulation 19(3): 311–318. DOI: 10.1080/02652040110081389.
- [28] V. Annisa, T. N. S. Sulaiman, A. K. Nugroho, A. E. Nugroho, and R. Kutsyk, (2022) “Characterization of Alginate with Natural Polymers Combination for Drug Encapsulation" Iraqi Journal of Pharmaceutical Sciences (P-ISSN 1683-3597 E-ISSN 2521-3512) 31(2): 150–159. DOI: 10.31351/vol31iss2pp150-159.
- [29] M. A. da Silva, A. C. K. Bierhalz, and T. G. Kieckbusch, (2009) “Alginate and pectin composite films crosslinked with Ca2+ ions: Effect of the plasticizer concentration" Carbohydrate polymers 77(4): 736–742. DOI: 10.1016/j.carbpol.2009.02.014.
- [30] L. Fan, K. Peng, M. Li, L. Wang, and T. Wang, (2013) “Preparation and properties of carboxymethyl κcarrageenan/alginate blend fibers" Journal of Biomaterials Science, Polymer Edition 24(9): 1099–1111. DOI: 10.1080/09205063.2012.739538.
- [31] N. Zhang, J. Xu, X. Gao, X. Fu, and D. Zheng, (2017) “Factors affecting water resistance of alginate/gellan blend films on paper cups for hot drinks" Carbohydrate Polymers 156: 435–442. DOI: 10.1016/j.carbpol.2016.08.101.
- [32] D. Mudgil, S. Barak, and B. S. Khatkar, (2014) “Guar gum: processing, properties and food applications—a review" Journal of food science and technology 51: 409–418. DOI: 10.1007/s13197-011-0522-x.
- [33] B.-B. Lee, P. Ravindra, and E.-S. Chan, (2013) “Size and shape of calcium alginate beads produced by extrusion dripping" Chemical Engineering & Technology 36(10): 1627–1642. DOI: 10.1002/ceat.201300230.
- [34] Y. Fang, S. Al-Assaf, G. O. Phillips, K. Nishinari, T. Funami, and P. A. Williams, (2008) “Binding behavior of calcium to polyuronates: Comparison of pectin with alginate" Carbohydrate Polymers 72(2): 334–341. DOI: 10.1016/j.carbpol.2007.08.021.
- [35] L. Cao, W. Lu, A. Mata, K. Nishinari, and Y. Fang, (2020) “Egg-box model-based gelation of alginate and pectin: A review" Carbohydrate polymers 242: 116389. DOI: 10.1016/j.carbpol.2020.116389.
- [36] P. Walkenstrom, S. Kidman, A.-M. Hermansson, P. B. Rasmussen, and L. Hoegh, (2003) “Microstructure and rheological behaviour of alginate/pectin mixed gels" Food hydrocolloids 17(5): 593–603. DOI: 10.1016/S0268-005X(02)00119-4.
- [37] P. Smrdel, M. Bogataj, A. Zega, O. Planinšek, and A. Mrhar, (2008) “Shape optimization and characterization of polysaccharide beads prepared by ionotropic gelation" Journal of Microencapsulation 25(2): 90–105. DOI: 10.1080/02652040701776109.
- [38] A. Escudero-Castellanos, B. E. Ocampo-Garcia, M. V. Dominguez-Garcia, J. Flores-Estrada, and M. V. Flores-Merino, (2016) “Hydrogels based on poly (ethylene glycol) as scaffolds for tissue engineering application: biocompatibility assessment and effect of the sterilization process" Journal of Materials Science: Materials in Medicine 27: 1–10.
- [39] W.-P. Voo, B.-B. Lee, A. Idris, A. Islam, B.-T. Tey, and E.-S. Chan, (2015) “Production of ultra-high concentration calcium alginate beads with prolonged dissolution profile" RSC Advances 5(46): 36687–36695. DOI: 10.1039/c5ra03862f.
- [40] H. Daemi and M. Barikani, (2012) “Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles" Scientia Iranica 19(6): 2023–2028. DOI: 10.1016/j.scient.2012.10.005.