Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Kusnadi1, Suprihatin2This email address is being protected from spambots. You need JavaScript enabled to view it., Farah Fahma2, Ono Suparno2, and Nastiti Siswi Indrasti2

1Doctorate Program in Agro-Industrial Engineering, IPB University, Bogor, Indonesia, 16680

2Department of Agro-Industrial Engineering, Faculty of Agricultural Technology, IPB University, Bogor, Indonesia, 16680


 

 

Received: June 17, 2023
Accepted: September 30, 2023
Publication Date: November 5, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202407_27(7).0009  


Crab is an exotic marine fishery commodity whose demand is increasing significantly in Indonesia. However, the industry also produces much waste in the form of crab shells, reaching 52.59% of its total weight. This waste (often called by-product) can be processed into several products with economic value such as chitosan, liquid organic fertilizer, and animal feed. This study assesses the environmental impact of crab shells processed into chitosan, liquid organic fertilizer, and animal feed. The study was carried out using the Life Cycle Assessment (LCA) approach with cradle-to-gate scope. The environmental impacts were observed consisting of some aspects such as Global Warming Potentials (GWP), Acidification Potentials (AP), Eutrophication Potentials (EP), and Cumulative Energy Demand (CED). The three-alternative utilization of crab shells produces environmental impacts resulting from fishing, transportation, and processing of the crab shells into these products. Afterward, the results of this study indicate that the crab shells processed into liquid fertilizer have the highest emission according to the GWP, AP, and CED values compared to the other by-product alternatives (i.e., chitosan and fertilizer). Whilst, the highest EP is produced by the processing of CS-based animal feed. These results can potentially become a consideration in making environmental policy by the local government, especially in Karawang Region.


Keywords: Acidification; Global Warming; Crab Shells; Cumulative Energy Demand; Eutrophication; Life Cycle Assessment


  1. [1] K. Istrianto, A. Widagdo, U. Prasetyono, and A. Suryana, (2021) “Crab fisheries on the north coast of the Karawang region, West Java, Indonesia" Aquaculture, Aquarium, Conservation Legislation Bioflux:
  2. [2] S. RSH, I. BH, K. VR, D. D, and P. A., (2022) “Karakteristik Teknis Alat Bantu Penangkapan Bubu Rajungan di Pesisir Kabupaten Karawang" Jurnal Penelitian Perikanan Indonesia:
  3. [3] M. Munir and M. Zainuddin, (2019) “Laju Penangkapan Rajungan (Portunus pelagicus) Menggunakan Bubu Lipat di Perairan Lamongan" Grouper 10: 1. DOI: 10.30736/grouper.v10i2.52.
  4. [4] S. Husni, M. Yusuf, M. Nursan, and A. F. U. FR, (2021) “Pemberdayaan Ekonomi Nelayan Rajungan Melalui Pengembangan Teknologi Alat Tangkap Bubu di Desa Pemongkong Kabupaten Lombok Timur" Jurnal Pengabdian Magister Pendidikan IPA 4: 347–355. DOI: 10.29303/jpmpi.v4i4.1143.
  5. [5] R. Suwandi, Nurjanah, M. Z. Ula, and R. M. Pertiwi, (2020) “Characteristics of chemical compounds of horseshoe crabs Tachypleus gigas in different body proportions" IOP Conference Series: Earth and Environmental Science 404: 012029. DOI: 10.1088/1755-1315/404/1/012029.
  6. [6] I. Muñoz, C. Rodríguez, D. Gillet, and B. M. Moerschbacher, (2018) “Life cycle assessment of chitosan production in India and Europe" The International Journal of Life Cycle Assessment 23: 1151–1160. DOI: 10.1007/s11367-017-1290-2.
  7. [7] K. Ningtyas, M. Muslihudin, and V. Elsyana, (2021) “Isolation and characterization chitosan from varied crab shell" International Conference on Agriculture and Applied Science: DOI: 10.25181/icoaas.v1i1.2008.
  8. [8] L. A. Rodrigues, I. R. Redovnikovi´c, A. R. C. Duarte, A. A. Matias, and A. Paiva, (2021) “Low-Phytotoxic Deep Eutectic Systems as Alternative Extraction Media for the Recovery of Chitin from Brown Crab Shells" ACS Omega 6: 28729–28741. DOI: 10.1021/acsomega.1c03402.
  9. [9] A. B. C. Ratri, (2021) “PEMANFAATAN LIMBAH CANGKANG KEPITING SEBAGAI BAHAN PENAMBAHAN PAKAN TERNAK BERKALSIUM TINGGI DALAM TINJAUAN MODERASI BERAGAMA" Transformatif : Jurnal Pengabdian Masyarakat 2: 101–124. DOI: 10.22515/tranformatif.v2i1.3145.
  10. [10] R. Rahmawati, E. Saputra, and A. A. Abdillah, (2019) “The Utilization of Flower Crab ( Portunus Pelagicus ) Shell as Pasta Flavor" IOP Conference Series: Earth and Environmental Science 236: 012130. DOI: 10.1088/1755-1315/236/1/012130.
  11. [11] F. H. Chi and W. P. Cheng, (2006) “Use of Chitosan as Coagulant to Treat Wastewater from Milk Processing Plant" Journal of Polymers and the Environment 14: 411–417. DOI: 10.1007/s10924-006-0027-2.
  12. [12] N. Amalia. “Life Cycle Assessment for Canned Crab Product (Portunus Pelagius) Product in Indonesia”. In: Dignified Researchers Publication (DiRPUB), 2018. DOI: 10.15242/DiRPUB.DIR1217206.
  13. [13] Kusnadi and F. Fahma, (2022) “Study on the impact of crab processing waste using LCA in Karawang Regency" IOP Conference Series: Earth and Environmental Science 1063: 012011. DOI: 10.1088/1755-1315/1063/1/012011.
  14. [14] E. I. Wiloso, M. Romli, B. A. Nugraha, A. R. Wiloso, A. A. R. Setiawan, and P. J. G. Henriksson, (2022) “Life cycle assessment of Indonesian canned crab ( Portunus pelagicus )" Journal of Industrial Ecology 26: 1947–1960. DOI: 10.1111/jiec.13276.
  15. [15] J. Pryshlakivsky and C. Searcy, (2021) “Life Cycle Assessment as a decision-making tool: Practitioner and managerial considerations" Journal of Cleaner Production 309: 127344. DOI: 10.1016/j.jclepro.2021.127344.
  16. [16] E. Szafranko, (2019) “Selected Problems of the Environmental Impact Analysis of Investment Projects Based on Life Cycle Assessment Procedure" Journal of Ecological Engineering 20: 87–94. DOI: 10.12911/22998993/112504.
  17. [17] B. Agarski, D. Vukelic, M. I. Micunovic, and I. Budak, (2019) “Evaluation of the environmental impact of plastic cap production, packaging, and disposal" Journal of Environmental Management 245: 55–65. DOI: 10.1016/j.jenvman.2019.05.078.
  18. [18] Jitender and P. Sarkar. Reduction of Environmental Impact of Products Through Hotspot Analysis in LCA. 2017, 153–163. DOI: 10.1007/978-981-10-3521-0_13.
  19. [19] Y. Chen, Y. Chen, K. Chen, and M. Liu, (2023) “Research Progress and Hotspot Analysis of Residential Carbon Emissions Based on CiteSpace Software" International Journal of Environmental Research and Public Health 20: 1706. DOI: 10.3390/ijerph20031706.
  20. [20] K. P. Amalia, M. Ekayani, and N. Nurjanah, (2021) “Pemetaan dan Alternatif Pemanfaatan Limbah Cangkang Rajungan di Indonesia" Jurnal Pengolahan Hasil Perikanan Indonesia 24: 310–318. DOI: 10.17844/jphpi.v24i3.37436.
  21. [21] M. Yusuf, L. C. Damayanti, A. D. Chesiadita, and Y. K. Sya’di. “Processing Swimming Crab Shell into Value-Added Products: It Utilization as a Calcium Source Flour and Flavoring”. In: 2023, 189–195. DOI: 10.2991/978-2-38476-078-7_20.
  22. [22] D. JB. Management of Industrial Cleaning Technology. 2006.
  23. [23] I. V. Muralikrishna and V. Manickam. Air Pollution Control Technologies. Elsevier, 2017, 337–397. DOI: 10.1016/B978-0-12-811989-1.00014-2.
  24. [24] C. Acar and I. Dincer. 3.1 Hydrogen Production. Elsevier, 2018, 1–40. DOI: 10.1016/B978-0-12-809597-3.00304-7.
  25. [25] A. Riofrio, T. Alcivar, and H. Baykara, (2021) “Environmental and Economic Viability of Chitosan Production in Guayas-Ecuador: A Robust Investment and Life Cycle Analysis" ACS Omega 6: 23038–23051. DOI: 10.1021/acsomega.1c01672.
  26. [26] A. A, E. A, and H. L. Polymers. 1. 2003.
  27. [27] L. Cuˇcek, J. J. Klemeš, and Z. Kravanja. ˇ Overview of environmental footprints. Elsevier, 2015, 131–193. DOI: 10.1016/B978-0-12-799968-5.00005-1.
  28. [28] C. B. Farinha, J. Brito, and M. D. Veiga. Eco-efficient Rendering Mortars: Use of Recycled Materials. 2021, 1– 258. DOI: 10.1016/B978-0-12-818494-3.00010-6.
  29. [29] R. Frischknecht, F. Wyss, S. B. Knöpfel, T. Lützkendorf, and M. Balouktsi, (2015) “Cumulative energy demand in LCA: the energy harvested approach" The International Journal of Life Cycle Assessment 20: 957–969. DOI: 10.1007/s11367-015-0897-4.
  30. [30] R. Nugroho, J. Hanafi, K. Shobatake, Y.-Y. Chun, K. Tahara, and W. W. Purwanto, (2022) “Life cycle inventories and life cycle assessment for an electricity grid network: case study of the Jamali grid, Indonesia" The International Journal of Life Cycle Assessment 27: 1081–1091. DOI: 10.1007/s11367-022-02082-5.
  31. [31] R. Munsif, M. Zubair, A. Aziz, and M. N. Zafar, (2021) “Industrial Air Emission Pollution: Potential Sources and Sustainable Mitigation" Environmental Emissions: DOI: 10.5772/intechopen.93104.
  32. [32] L. Pei, P. Schalbart, and B. Peuportier, (2022) “Life cycle assessment of a residential building in China accounting for spatial and temporal variations of electricity production" Journal of Building Engineering 52: 104461. DOI: 10.1016/j.jobe.2022.104461.
  33. [33] Deskera. The Impact of Chemical Manufacturing on the Environment. 2023.
  34. [34] X. Zhu, C.-H. Ho, and X. Wang, (2020) “Application of Life Cycle Assessment and Machine Learning for HighThroughput Screening of Green Chemical Substitutes" ACS Sustainable Chemistry Engineering 8: 11141–11151. DOI: 10.1021/acssuschemeng.0c02211.
  35. [35] A. A. F. Fini and A. Akbarnezhad. Sustainable Construction Technologies. Elsevier, 2019. DOI: 10.1016/C2016-0-01288-3.
  36. [36] LCI. What is Life Cycle Thinking.
  37. [37] E. Jacob-Lopes, L. Q. Zepka, and M. C. Deprá. Sustainability Metrics and Indicators of Environmental Impact. Elsevier, 2021. DOI: 10.1016/C2020-0-00268-9.
  38. [38] B. Rivela, B. Kuczenski, and D. Sucozhañay. Assessing Progress Towards Sustainability. Elsevier, 2022. DOI: 10.1016/C2020-0-02723-4.
  39. [39] C. Seidel, (2016) “The application of life cycle assessment to public policy development" The International Journal of Life Cycle Assessment 21: 337–348. DOI: 10.1007/s11367-015-1024-2.
  40. [40] S. Sala, A. Anton, S. J. McLaren, B. Notarnicola, E. Saouter, and U. Sonesson, (2017) “In quest of reducing the environmental impacts of food production and consumption" Journal of Cleaner Production 140: 387– 398. DOI: 10.1016/j.jclepro.2016.09.054.
  41. [41] B. Kumar and P. Verma, (2021) “Life cycle assessment: Blazing a trail for bioresources management" Energy Conversion and Management: X 10: 100063. DOI: 10.1016/j.ecmx.2020.100063.
  42. [42] J. Hanafi and K. Siregar. POTENSI PEMANFAATAN INSTRUMEN LIFE CYCLE ASSESSMENT DALAM MENGENDALIKAN PERUBAHAN IKLIM. 2018.