Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Prayoon Surin1This email address is being protected from spambots. You need JavaScript enabled to view it., Boonsin Nadondu2, Jakawat Deeying3

1Department of Advanced Manufacturing Technology, Faculty of Engineering, Pathumwan Institute of Technology, Bangkok 10330, Thailand

2Department of Production Technology, Faculty of Agricultural and Industrial Technology, Phetchabun Rajabhat University, Phetchabun 67000, Thailand

3Logistics and Supply Chain Management Research Center, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand


 

Received: September 15, 2022
Accepted: May 12, 2023
Publication Date: July 12, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202402_27(2).0014  


The objective of this study was to explore the feasibility of employing durian skin fiber (DSF) waste as a reinforcing agent for a composite material composed of glass fiber, carbon fiber and polylactic acid (PLA). We used mixture design methodology and the response surface methodology to determine the optimal proportion of composite material for enhancing flexural strength and flexural modulus. The composite material was prepared using an injection molding process, and the fracture surface was analyzed using scanning electron microscopy (SEM). Using response surface methodology, we established mathematical relationships between composite material parameters and desired responses. Then, we optimized them using multi-objective methods to determine the optimal process parameters. Validation tests show agreement between predicted and actual values. The optimal composite formula has 0.00 wt% glass fiber, 15.66 wt% carbon fiber, 14.34 wt% DSF and 70.00 wt% PLA.


Keywords: Mixture design, composite material, injection molding, durian skin fiber, flexural properties


  1. [1] Y. Liu, J.-P. Yang, H.-M. Xiao, C.-B. Qu, Q.-P. Feng, S.-Y. Fu, and Y. Shindo, (2012) “Role of matrix modification on interlaminar shear strength of glass fibre/epoxy composites" Composites Part B: Engineering 43(1): 95–98. DOI: 10.1016/j.compositesb.2011.04.037.
  2. [2] P. Franciszczak, K. Kalnin, š, and A. Bł˛edzki, (2018) “Hybridisation of man-made cellulose and glass reinforcement in short-fibre composites for injection moulding– Effects on mechanical performance" Composites Part B: Engineering 145: 14–27. DOI: 10.1016/j.compositesb.2018.03.008.
  3. [3] N. Guermazi, A. B. Tarjem, I. Ksouri, and H. F. Ayedi, (2016) “On the durability of FRP composites for aircraft structures in hygrothermal conditioning" Composites Part B: Engineering 85: 294–304. DOI: 10.1016/j.compositesb.2015.09.035.
  4. [4] S. Sakuri, E. Surojo, D. Ariawan, and A. R. Prabowo, (2020) “Experimental investigation on mechanical characteristics of composite reinforced cantala fiber (CF) subjected to microcrystalline cellulose and fumigation treatments" Composites Communications 21: 100419. DOI: 10.1016/j.coco.2020.100419.
  5. [5] G. Koronis, A. Silva, and M. Fontul, (2013) “Green composites: A review of adequate materials for automotive applications" Composites Part B: Engineering 44(1): 120–127. DOI: 10.1016/j.compositesb.2012.07.004.
  6. [6] S. Li, T. Zheng, Q. Li, Y. Hu, and B. Wang, (2019) “Flexural and energy absorption properties of natural-fiber reinforced composites with a novel fabrication technique" Composites Communications 16: 124–131. DOI: 10.1016/j.coco.2019.09.005.
  7. [7] A. Chatterjee, S. Kumar, and H. Singh, (2020) “Tensile strength and thermal behavior of jute fibre reinforced polypropylene laminate composite" Composites Communications 22: 100483. DOI: 10.1016/j.coco.2020.100483.
  8. [8] N. N. Aimi, H. Anuar, M. Manshor, W. W. Nazri, and S. Sapuan, (2014) “Optimizing the parameters in durian skin fiber reinforced polypropylene composites by response surface methodology" Industrial Crops and Products 54: 291–295. DOI: 10.1016/j.indcrop.2014.01.016.
  9. [9] A. Putra, M. N. Othman, T. Oliveira, M. Souli, D. H. Kassim, and S. Herawan, (2022) “Waste Durian Husk Fibers as Natural Sound Absorber: Performance and Acoustic Characterization" Buildings 12(8): 1112. DOI: 10.3390/buildings12081112.
  10. [10] M. C. Lee, S. C. Koay, M. Y. Chan, H. L. Choo, M. M. Pang, P. M. Chou, and K. Y. Tshai, (2020) “Properties of poly (lactic acid)/durian husk fiber biocomposites: Effects of fiber content and processing aid" Journal of Thermoplastic Composite Materials 33(11): 1518–1532. DOI: 10.1177/0892705719831734.
  11. [11] N. Hegyesi, Y. Zhang, A. Kohári, P. Polyák, X. Sui, and B. Pukánszky, (2019) “Enzymatic degradation of PLA/cellulose nanocrystal composites" Industrial Crops and Products 141: 111799. DOI: 10.1016/j.indcrop.2019.111799.
  12. [12] K. L. Pickering, M. A. Efendy, and T. M. Le, (2016) “A review of recent developments in natural fibre composites and their mechanical performance" Composites Part A: Applied Science and Manufacturing 83: 98–112. DOI: 10.1016/j.compositesa.2015.08.038.
  13. [13] G. Gamon, P. Evon, and L. Rigal, (2013) “Twin-screw extrusion impact on natural fibre morphology and material properties in poly (lactic acid) based biocomposites" Industrial Crops and Products 46: 173–185. DOI: 10.1016/j.indcrop.2013.01.026.
  14. [14] C. Dong, (2020) “Flexural properties of symmetric carbon and glass fibre reinforced hybrid composite laminates" Composites Part C: Open Access 3: 100047. DOI: 10.1016/j.jcomc.2020.100047.
  15. [15] M. Ayaz, (2018) “Evaluation of the impact and flexural strength of PP/clay/CaCO3/MAPP ternary nanocomposites by application of full factorial design of experiment" Journal of Thermoplastic Composite Materials: 0892705718808566. DOI: 10.1177/0892705718808566.
  16. [16] B. Nadondu, P. Surin, and J. Deeying, (2022) “Multiobjective optimization on mechanical properties of glasscarbon and durian skin fiber reinforced poly (lactic acid) hybrid composites using the extreme mixture design response surface methodology" Case Studies in Construction Materials 17: e01675. DOI: 10.1016/j.cscm.2022.e01675.
  17. [17] K. L. Pickering, M. A. Efendy, and T. M. Le, (2016) “A review of recent developments in natural fibre composites and their mechanical performance" Composites Part A: Applied Science and Manufacturing 83: 98–112. DOI: 10.1016/j.compositesa.2015.08.038.
  18. [18] G.-C. Yu, L.-Z. Wu, and L.-J. Feng, (2015) “Enhancing the thermal conductivity of carbon fiber reinforced polymer composite laminates by coating highly oriented graphite films" Materials & Design 88: 1063–1070. DOI: 10.1016/j.matdes.2015.09.096.
  19. [19] M. Manshor, H. Anuar, M. N. Aimi, M. A. Fitrie, W. W. Nazri, S. Sapuan, Y. El-Shekeil, and M. Wahit, (2014) “Mechanical, thermal and morphological properties of durian skin fibre reinforced PLA biocomposites" Materials & Design 59: 279–286. DOI: 10.1016/j.matdes.2014.02.062.
  20. [20] natureworksllc. 2023.
  21. [21] D. C. Montgomery. Design and analysis of experiments. John wiley & sons, 2017.
  22. [22] I. Minitab. Minitab 17 statistical software. State College: Minitab. 2010.
  23. [23] J. Lawson and C. Willden, (2016) “Mixture experiments in R using mixexp" Journal of Statistical Software 72: 1–20. DOI: 10.18637/jss.v072.c02.
  24. [24] I. ASTM, (2017) “Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials" ASTM D790-17:
  25. [25] I. Tharazi, A. Sulong, N. Muhamad, C. Haron, D. Tholibon, N. Ismail, M. Radzi, and Z. Razak, (2017) “Optimization of hot press parameters on tensile strength for unidirectional long kenaf fiber reinforced polylacticacid composite" Procedia engineering 184: 478–485. DOI: 10.1016/j.proeng.2017.04.150.
  26. [26] G. Koronis, A. Silva, and S. Foong, (2017) “Predicting the flexural performance of woven flax reinforced epoxy composites using design of experiments" Materials Today Communications 13: 317–324. DOI: 10.1016/j.mtcomm.2017.10.019.
  27. [27] J. Deeying, K. Asawarungsaengkul, and P. Chutima, (2018) “Multi-objective optimization on laser solder jet bonding process in head gimbal assembly using the response surface methodology" Optics & Laser Technology 98: 158–168. DOI: 10.1016/j.optlastec.2017.07.045.
  28. [28] K. Maji, D. Pratihar, and A. Nath, (2013) “Experimental investigations and statistical analysis of pulsed laser bending of AISI 304 stainless steel sheet" Optics & Laser Technology 49: 18–27. DOI: 10.1016/j.optlastec.2012.12.006.
  29. [29] L. Liu, X. Wang, H. Zou, M. Yu, and W. Xie, (2017) “Optimizing synthesis parameters of short carbon fiber reinforced polysulfonamide composites by using response surface methodology" Polymer Testing 59: 355–361. DOI: 10.1016/j.polymertesting.2017.02.013.
  30. [30] I. Abdulkadir, B. S. Mohammed, M. Liew, and M. Wahab, (2021) “Modelling and multi-objective optimization of the fresh and mechanical properties of self-compacting high volume fly ash ECC (HVFA-ECC) using response surface methodology (RSM)" Case Studies in Construction Materials 14: e00525. DOI: 10.1016/j.cscm.2021.e00525.
  31. [31] W. Zhang, T. Zhang, Z. Chen, G. Wang, Z. Zhang, L. Hu, et al., (2021) “Design and Test of Pneumatic Cleaning System for Potato Micro-seed Seeding" Journal of Applied Science and Engineering 25(1): 37–48. DOI: 10.6180/jase.202202_25(1).0005.
  32. [32] C. Homkhiew, T. Ratanawilai, and W. Thongruang, (2014) “The optimal formulation of recycled polypropylene/rubberwood flour composites from experiments with mixture design" Composites Part B: Engineering 56: 350–357. DOI: 10.1016/j.compositesb.2013.08.041.
  33. [33] M. A. Loubes, S. K. Flores, and M. P. Tolaba, (2016) “Effect of formulation on rice noodle quality: Selection of functional ingredients and optimization by mixture design" LWT-Food Science and Technology 69: 280–286. DOI: 10.1016/j.lwt.2016.01.055.
  34. [34] M. Assawadithalerd, N. Chollacoop, J. Mungkalasiri, and C. Tongcumpou, (2016) “Optimizing Jatropha biodiesohol composition for a suitable kinematic viscosity by a phase diagram and mixture design" Fuel 164: 134–140. DOI: 10.1016/j.fuel.2015.09.090.
  35. [35] P. Sungsuk, S. Chayaporn, S. Sunphorka, P. Kuchonthara, P. Piumsomboon, and B. Chalermsinsuwan, (2016) “Prediction of pyrolysis kinetic parameters from biomass constituents based on simplex-lattice mixture design" Chinese Journal of Chemical Engineering 24(4): 535–542. DOI: 10.1016/j.cjche.2016.01.004.
  36. [36] Y. Arao, T. Fujiura, S. Itani, and T. Tanaka, (2015) “Strength improvement in injection-molded jute-fiberreinforced polylactide green-composites" Composites Part B: Engineering 68: 200–206. DOI: 10.1016/j.compositesb.2014.08.032.
  37. [37] M. Aslan, M. Tufan, and T. Küçükömero˘glu, (2018) “Tribological and mechanical performance of sisal-filled waste carbon and glass fibre hybrid composites" Composites Part B: Engineering 140: 241–249. DOI: 10.1016/j.compositesb.2017.12.039.
  38. [38] A. Pappu, K. L. Pickering, and V. K. Thakur, (2019) “Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding" Industrial Crops and Products 137: 260–269. DOI: 10.1016/j.indcrop.2019.05.040.
  39. [39] S. K. Das, J. Khanam, and A. Nanda, (2016) “Optimization of preparation method for ketoprofen-loaded microspheres consisting polymeric blends using simplex lattice mixture design" Materials Science and Engineering: C 69: 598–608. DOI: 10.1016/j.msec.2016.07.010.


    



 

1.6
2022CiteScore
 
 
60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.