Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Malinee Sriariyanun1This email address is being protected from spambots. You need JavaScript enabled to view it., Marttin Paulraj Gundupalli1, Vanarat Phakeenuya2, Theerawut Phusamtisampan2, Yu-Shen Cheng3, Ponnusami Venkatachalam4

1Biorefinery and Process Automation Engineering Center, Department of Chemical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand

2Department of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand

3Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan

4Bioprocess Intensification Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Thanjavur 613401, India


 

Received: November 13, 2022
Accepted: March 8, 2023
Publication Date: June 17, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202402_27(2).0001  


Cellulosic ethanol has been gaining high attention due to its potential to reduce the greenhouse gas emission and cut down the world dependence on fossil fuels. Biorefinery approach for cellulosic ethanol has advantages due to its non-food competing status, natural abundance and benefit to decrease the combustion of agricultural wastes after harvesting seasons. Due to the recalcitrant structure of lignocellulose biomass, pretreatment and hydrolysis are critical to determine the economic viability of the process because they influence the conversion rate of fermentable sugars and, subsequently, final product i.e. ethanol. Therefore, the design for the process to compromise fermentation and upstream process is also essential. With all constraints exist when using harsh conditions during pretreatment, the recombinant engineered microorganisms have been developed and applied as biocatalysts during fermentation. To achieve the maximum production efficiency, different strategies of recombinant engineered microbes include expression optimization to modify the metabolic pathway, modification of secretion and transportation routes, improvement of stress tolerance, and utilization of both C5 and C6 sugars. This review provides the development and current status of cellulosic ethanol production via biorefining process by genetic engineered microbes with a focus on the technological aspects. The remaining challenges, perspective, and economical feasibility of the process are also discussed.


Keywords: Biorefinery, Enzymatic saccharification, Ethanol, Fermentation, Lignocellulosic biomass, Pretreatment, Recombinant engineering


  1. [1] T. Hasunuma and A. Kondo, (2012) “Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains" Process Biochemistry 47(9): 1287–1294. DOI: 10.1016/j.procbio.2012.05.004.
  2. [2] Y.-S. Cheng, P. Mutrakulcharoen, S. Chuetor, K. Cheenkachorn, P. Tantayotai, E. J. Panakkal, and M. Sriariyanun, (2020) “Recent situation and progress in biorefining process of lignocellulosic biomass: Toward green economy" Applied Science and Engineering Progress 13(4): 299–311. DOI: 10.14416/j.asep.2020. 08.002.
  3. [3] M. P. Gundupalli and M. Sriariyanun, (2022) “Recent trends and updates for chemical pretreatment of lignocellulosic biomass" Appl. Sci. Eng. Prog 16: 5842. DOI: 10.14416/j.asep.2022.03.002.
  4. [4] T. Raj, K. Chandrasekhar, A. N. Kumar, J. R. Banu, J.-J. Yoon, S. K. Bhatia, Y.-H. Yang, S. Varjani, and S.-H. Kim, (2022) “Recent advances in commercial biorefineries for lignocellulosic ethanol production: Current status, challenges and future perspectives" Bioresource technology 344: 126292. DOI: 10.1016/j.biortech.2021.126292.
  5. [5] J. Qiao, H. Cui, M. Wang, X. Fu, X. Wang, X. Li, and H. Huang, (2022) “Integrated biorefinery approaches for the industrialization of cellulosic ethanol fuel" Bioresource Technology: 127516. DOI: 10.1016/j.biortech.2022.127516.
  6. [6] L. G. Nair, K. Agrawal, and P. Verma, (2022) “An insight into the principles of lignocellulosic biomass-based zero-waste biorefineries: a green leap towards imperishable energy-based future" Biotechnology and Genetic Engineering Reviews: 1–51. DOI: 10.1080/02648725.2022.2082223.
  7. [7] A. M. Borrero-Lopez, C. Valencia, and J. Franco, (2022) “Lignocellulosic materials for the production of biofuels, biochemicals and biomaterials and applications of lignocellulose-based polyurethanes: a review" Polymers 14(5): 881. DOI: 10.3390/polym14050881.
  8. [8] H. Guo, Y. Zhao, J.-S. Chang, and D.-J. Lee, (2022) “Inhibitor formation and detoxification during lignocellulose biorefinery: A review" Bioresource Technology: 127666. DOI: 10.1016/j.biortech.2022.127666.
  9. [9] B. A. Brandt, T. Jansen, J. F. Görgens, and W. H. van Zyl, (2019) “Overcoming lignocellulose-derived microbial inhibitors: advancing the Saccharomyces cerevisiae resistance toolbox" Biofuels, Bioproducts and Biorefining 13(6): 1520–1536. DOI: 10.1002/bbb.2042.
  10. [10] S.-J. Ha, J. M. Galazka, S. Rin Kim, J.-H. Choi, X. Yang, J.-H. Seo, N. Louise Glass, J. H. Cate, and Y.-S. Jin, (2011) “Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation" Proceedings of the National Academy of Sciences 108(2): 504–509. DOI: 10.1073/pnas.1010456108.
  11. [11] T. W. Jeffries and Y.-S. Jin, (2000) “Ethanol and thermotolerance in the bioconversion of xylose by yeasts": DOI: DOI:10.1016/S0065-2164(00)47006-1.
  12. [12] A. Duque, C. Álvarez, P. Doménech, P. Manzanares, and A. D. Moreno, (2021) “Advanced bioethanol production: From novel raw materials to integrated biorefineries" Processes 9(2): 206.
  13. [13] Z. Ahmad, W. W. Al Dajani, M. Paleologou, and C. Xu, (2020) “Sustainable process for the depolymerization/oxidation of softwood and hardwood kraft lignins using hydrogen peroxide under ambient conditions" Molecules 25(10): 2329. DOI: 10.3390/molecules25102329.
  14. [14] J.-M. Lavoie, R. Beauchet, V. Berberi, and M. Chornet. “Biorefining lignocellulosic biomass via the feedstock impregnation rapid and sequential steam treatment”. In: Biofuel’s Engineering Process Technology. IntechOpen, 2011. DOI: 10.5772/18186.
  15. [15] D. Jose, C. Muenmuang, N. Kitiborwornkul, P. Yasurin, S. Asavasanti, P. Tantayotai, and M. Sriariyanun, (2022) “Effect of surfactants and Co-surfactants in formulation of noni fruit extract in virgin coconut oil-based emulsion" Journal of the Indian Chemical Society 99(10): 100729.
  16. [16] L. Zhao, Z.-F. Sun, C.-C. Zhang, J. Nan, N.-Q. Ren, D.-J. Lee, and C. Chen, (2022) “Advances in pretreatment of lignocellulosic biomass for bioenergy production: Challenges and perspectives" Bioresource Technology 343: 126123. DOI: 10.1016/j.biortech.2021.126123.
  17. [17] Y.-S. Cheng, Z.-Y. Wu, and M. Sriariyanun, (2019) “Evaluation of Macaranga tanarius as a biomass feedstock for fermentable sugars production" Bioresource technology 294: 122195. DOI: 10.1016/j.biortech.2019.122195.
  18. [18] S. Sharma, E. Varghese, A. Arora, K. Singh, S. Singh, L. Nain, and D. Paul, (2018) “Augmenting pentose utilization and ethanol production of native Saccharomyces cerevisiae LN using medium engineering and response surface methodology" Frontiers in Bioengineering and Biotechnology 6: 132.
  19. [19] E. J. Panakkal, M. Sriariyanun, J. Ratanapoompinyo, P. Yasurin, K. Cheenkachorn, W. Rodiahwati, and P. Tantayotai, (2022) “Influence of sulfuric acid pretreatment and inhibitor of sugarcane bagasse on the production of fermentable sugar and ethanol" Applied Science and Engineering Progress 15(1): DOI: 10.14416/j.asep. 2021.07.006.
  20. [20] J. Sharma, V. Kumar, R. Prasad, and N. A. Gaur, (2022) “Engineering of Saccharomyces cerevisiae as a consolidated bioprocessing host to produce cellulosic ethanol: Recent advancements and current challenges" Biotechnology Advances: 107925. DOI: 10.1016/j.biotechadv.2022.107925.
  21. [21] T. H. Kim, R. Gupta, and Y. Lee, (2009) “Pretreatment of biomass by aqueous ammonia for bioethanol production" Biofuels: methods and protocols: 79–91. DOI: 10.1007/978-1-60761-214-8_6.
  22. [22] W. H. Van Zyl, L. R. Lynd, R. den Haan, and J. E. McBride, (2007) “Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae" Biofuels: 205–235. DOI: 10.1007/10_2007_061.
  23. [23] H. Zabed, J. Sahu, A. N. Boyce, and G. Faruq, (2016) “Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches" Renewable and sustainable energy reviews 66: 751–774. DOI: 10.1016/j.rser.2016.08.038.
  24. [24] L. Peng and Y. Chen, (2011) “Conversion of paper sludge to ethanol by separate hydrolysis and fermentation (SHF) using Saccharomyces cerevisiae" Biomass and Bioenergy 35(4): 1600–1606. DOI: 10.1016/j.biombioe.2011.01.059.
  25. [25] M. P. Coughlan, (1985) “The properties of fungal and bacterial cellulases with comment on their production and application" Biotechnology and genetic engineering reviews 3(1): 39–110. DOI: 10.1080/02648725.1985.10647809.
  26. [26] M. Parapouli, A. Vasileiadis, A.-S. Afendra, and E. Hatziloukas, (2020) “Saccharomyces cerevisiae and its industrial applications" AIMS microbiology 6(1): 1. DOI: 10.3934/microbiol.2020001.
  27. [27] M. A. Tesfay, X. Win, H. Lin, Y. Liu, C. Li, J. Lin, and J. Lin, (2021) “Efficient L-xylulose production using wholecell biocatalyst with NAD+ regeneration system through co-expression of xylitol dehydrogenase and NADH oxidase in Escherichia coli" Biochemical Engineering Journal 175: 108137.
  28. [28] N. K. Sharma, S. Behera, R. Arora, S. Kumar, and R. K. Sani, (2018) “Xylose transport in yeast for lignocellulosic ethanol production: current status" Journal of bioscience and bioengineering 125(3): 259–267. DOI: 10.1016/j.jbiosc.2017.10.006.
  29. [29] J. T. Cunha, P. O. Soares, S. L. Baptista, C. E. Costa, and L. Domingues, (2020) “Engineered Saccharomyces cerevisiae for lignocellulosic valorization: a review and perspectives on bioethanol production" Bioengineered 11(1): 883–903. DOI: 10.1080/21655979.2020.1801178.
  30. [30] M. Toor, S. S. Kumar, S. K. Malyan, N. R. Bishnoi, T. Mathimani, K. Rajendran, and A. Pugazhendhi, (2020) “An overview on bioethanol production from lignocellulosic feedstocks" Chemosphere 242: 125080. DOI: 10.1016/j.chemosphere.2019.125080.
  31. [31] J. M. Fox, S. E. Levine, H. W. Blanch, and D. S. Clark, (2012) “An evaluation of cellulose saccharification and fermentation with an engineered Saccharomyces cerevisiae capable of cellobiose and xylose utilization" Biotechnology Journal 7(3): 361–373. DOI: 10.1002/biot.201100209.
  32. [32] V. Rana, A. D. Eckard, and B. K. Ahring, (2014) “Comparison of SHF and SSF of wet exploded corn stover and loblolly pine using in-house enzymes produced from T. reesei RUT C30 and A. saccharolyticus" SpringerPlus 3: 1–13. DOI: 10.1186/2193-1801-3-516.
  33. [33] D. Dahnum, S. O. Tasum, E. Triwahyuni, M. Nurdin, and H. Abimanyu, (2015) “Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch" Energy Procedia 68: 107–116. DOI: 10.1016/j.egypro.2015.03.238.
  34. [34] F. Alfani, A. Gallifuoco, A. Saporosi, A. Spera, and M. Cantarella, (2000) “Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw" Journal of Industrial Microbiology and Biotechnology 25(4): 184–192. DOI: 10.1038/sj.jim.7000054.
  35. [35] H. Kawaguchi, T. Hasunuma, C. Ogino, and A. Kondo, (2016) “Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks" Current opinion in biotechnology 42: 30–39. DOI: 10.1016/j.copbio.2016.02.031.
  36. [36] K. Olofsson, B. Palmqvist, and G. Lidén, (2010) “Improving simultaneous saccharification and cofermentation of pretreated wheat straw using both enzyme and substrate feeding" Biotechnology for biofuels 3: 1–9. DOI: 10.1186/1754-6834-3-17.
  37. [37] Z.-H. Liu and H.-Z. Chen, (2016) “Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading" Bioresource technology 201: 15–26. DOI: 10.1016/j.biortech.2015.11.023.
  38. [38] J.-Q. Zhu, Q.-J. Zong, W.-C. Li, M.-Z. Chai, T. Xu, H. Liu, H. Fan, B.-Z. Li, and Y.-J. Yuan, (2020) “Temperature profiled simultaneous saccharification and cofermentation of corn stover increases ethanol production at high solid loading" Energy Conversion and Management 205: 112344.
  39. [39] L. R. Lynd, W. H. Van Zyl, J. E. McBride, and M. Laser, (2005) “Consolidated bioprocessing of cellulosic biomass: an update" Current opinion in biotechnology 16(5): 577–583. DOI: 10.1016/j.copbio.2005.08.009.
  40. [40] Y. Liu, X. Xie, W. Liu, H. Xu, and Y. Cao, (2020) “Consolidated bioprocess for bioethanol production from lignocellulosic biomass using Clostridium thermocellum DSM 1237" BioResources 15(4): 8355. DOI: 10.15376/biores.15.4.8355-8368.
  41. [41] A. Althuri, L. K. S. Gujjala, and R. Banerjee, (2017) “Partially consolidated bioprocessing of mixed lignocellulosic feedstocks for ethanol production" Bioresource Technology 245: 530–539. DOI: 10.1016/j.biortech.2017.08.140.
  42. [42] S. Vaid, S. Sharma, H. C. Dutt, R. Mahajan, and B. K. Bajaj, (2021) “One pot consolidated bioprocess for conversion of Saccharum spontaneum biomass to ethanolbiofuel" Energy Conversion and Management 250: 114880. DOI: 10.1016/j.enconman.2021.114880.
  43. [43] L. Chen, J.-L. Du, Y.-J. Zhan, J.-A. Li, R.-R. Zuo, and S. Tian, (2018) “Consolidated bioprocessing for cellulosic ethanol conversion by cellulase–xylanase cellsurfaced yeast consortium" Preparative Biochemistry and Biotechnology 48(7): 653–661. DOI: 10.1080/10826068.2018.1487846.
  44. [44] L. R. Lynd, X. Liang, M. J. Biddy, A. Allee, H. Cai, T. Foust, M. E. Himmel, M. S. Laser, M. Wang, and C. E. Wyman, (2017) “Cellulosic ethanol: status and innovation" Current opinion in biotechnology 45: 202–211.
  45. [45] A. Joshi, K. K. Verma, V. D Rajput, T. Minkina, and J. Arora, (2022) “Recent advances in metabolic engineering of microorganisms for advancing lignocellulose-derived biofuels" Bioengineered 13(4): 8135–8163.
  46. [46] S. Kirdponpattara, S. Chuetor, M. Sriariyanun, and M. Phisalaphong, (2022) “Bioethanol Production by Pichia stipitis Immobilized on Water Hyacinth and Thinshell Silk Cocoon" Applied Science and Engineering Progress 15(3): 4662–4662. DOI: 10.14416/j.asep.2021.03.006.
  47. [47] S. Lane, J. Dong, and Y.-S. Jin, (2018) “Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae" Bioresource technology 260: 380–394.
  48. [48] M. Taha, M. Foda, E. Shahsavari, A. Aburto-Medina, E. Adetutu, and A. Ball, (2016) “Commercial feasibility of lignocellulose biodegradation: possibilities and challenges" Current Opinion in Biotechnology 38: 190–197.
  49. [49] M. Broda, D. J. Yelle, and K. Serwa´nska, (2022) “Bioethanol Production from Lignocellulosic Biomass—Challenges and Solutions" Molecules 27(24): 8717.
  50. [50] Z. Yao, Q. Wang, and Z. Dai, (2022) “Recent advances in directed yeast genome evolution" Journal of Fungi 8(6): 635. DOI: 10.3390/jof8060635.
  51. [51] Y. A. Menegon, J. Gross, and A. P. Jacobus, (2022) “How adaptive laboratory evolution can boost yeast tolerance to lignocellulosic hydrolyses" Current Genetics 68(3-4): 319–342. DOI: 10.1007/s00294-022-01237-z.
  52. [52] A. P. Jacobus, J. Gross, J. H. Evans, S. R. CeccatoAntonini, and A. K. Gombert, (2021) “Saccharomyces cerevisiae strains used industrially for bioethanol production" Essays in Biochemistry 65(2): 147–161. DOI: 10.1002/biot.202000142.
  53. [53] A. P. Jacobus, J. Gross, J. H. Evans, S. R. CeccatoAntonini, and A. K. Gombert, (2021) “Saccharomyces cerevisiae strains used industrially for bioethanol production" Essays in Biochemistry 65(2): 147–161. DOI: 10.1042/EBC20200160.
  54. [54] J. Sharma, V. Kumar, R. Prasad, and N. A. Gaur, (2022) “Engineering of Saccharomyces cerevisiae as a consolidated bioprocessing host to produce cellulosic ethanol: Recent advancements and current challenges" Biotechnology Advances: 107925.
  55. [55] D. P. Procópio, E. Kendrick, R. Goldbeck, A. R. d. L. Damasio, T. T. Franco, D. J. Leak, Y.-S. Jin, and T. O. Basso, (2022) “Xylo-Oligosaccharide Utilization by Engineered Saccharomyces cerevisiae to Produce Ethanol" Frontiers in Bioengineering and Biotechnology 10: 105. DOI: 10.3389/fbioe.2022.825981.
  56. [56] A. Madhavan, K. Arun, R. Sindhu, B. G. Nair, A. Pandey, M. K. Awasthi, G. Szakacs, and P. Binod, (2022) “Design and genome engineering of microbial cell factories for efficient conversion of lignocellulose to fuel" Bioresource Technology: 128555.
  57. [57] F. Maleki, M. Changizian, N. Zolfaghari, S. Rajaei, K. A. Noghabi, and H. S. Zahiri, (2021) “Consolidated bioprocessing for bioethanol production by metabolically engineered Bacillus subtilis strains" Scientific Reports 11(1): 13731. DOI: 10.1038/s41598-021-92627-9.
  58. [58] E. Guedon, M. Desvaux, and H. Petitdemange, (2002) “Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering" Applied and environmental microbiology 68(1): 53–58. DOI: 10.1128/AEM.68.1.53-58.2002.
  59. [59] S. Hon, D. G. Olson, E. K. Holwerda, A. A. Lanahan, S. J. Murphy, M. I. Maloney, T. Zheng, B. Papanek, A. M. Guss, and L. R. Lynd, (2017) “The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum" Metabolic engineering 42: 175–184. DOI: 10.1016/j.ymben.2017.06.011.
  60. [60] R. Biswas, S. Prabhu, L. R. Lynd, and A. M. Guss, (2014) “Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum" PLoS One 9(2): e86389. DOI: 10.1371/journal.pone.0086389.
  61. [61] S. Kannuchamy, N. Mukund, and L. M. Saleena, (2016) “Genetic engineering of Clostridium thermocellum DSM1313 for enhanced ethanol production" BMC biotechnology 16(1): 1–6. DOI: 10.1186/s12896-016-0260-2.
  62. [62] B. Dien, R. Hespell, L. Ingram, and R. Bothast, (1997) “Conversion of corn milling fibrous co-products into ethanol by recombinant Escherichia coli strains K011 and SL40" World Journal of Microbiology and Biotechnology 13: 619–625. DOI: 10.1023/A:1018554417934.
  63. [63] C. Dong, J. Qiao, X. Wang, W. Sun, L. Chen, S. Li, K. Wu, L. Ma, and Y. Liu, (2020) “Engineering Pichia pastoris with surface-display minicellulosomes for carboxymethyl cellulose hydrolysis and ethanol production" Biotechnology for biofuels 13(1): 1–9. DOI: 10.1186/s13068-020-01749-1.
  64. [64] S. Yanase, T. Hasunuma, R. Yamada, T. Tanaka, C. Ogino, H. Fukuda, and A. Kondo, (2010) “Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes" Applied Microbiology and Biotechnology 88: 381–388. DOI: 10.1007/s00253-010-2784-z.
  65. [65] B. He, B. Hao, H. Yu, F. Tu, X. Wei, K. Xiong, Y. Zeng, H. Zeng, P. Liu, Y. Tu, et al., (2022) “Double integrating XYL2 into engineered Saccharomyces cerevisiae strains for consistently enhanced bioethanol production by effective xylose and hexose co-consumption of steam-exploded lignocellulose in bioenergy crops" Renewable Energy 186: 341–349. DOI: 10.1016/j.renene.2021.12.103.
  66. [66] R. A. Cripwell, S. H. Rose, L. Favaro, and W. H. Van Zyl, (2019) “Construction of industrial Saccharomyces cerevisiae strains for the efficient consolidated bioprocessing of raw starch" Biotechnology for biofuels 12: 1–16. DOI: 10.1186/s13068-019-1541-5.
  67. [67] J. K. Ko, Y. Um, H. M. Woo, K. H. Kim, and S.-M. Lee, (2016) “Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway" Bioresource Technology 209: 290–296. DOI: 10.1016/j.biortech.2016.02.124.
  68. [68] J. T. Cunha, T. Q. Aguiar, A. Romanı, C. Oliveira, and L. Domingues, (2015) “Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors" Bioresource Technology 191: 7–16. DOI: 10.1016/j.biortech.2015.05.006.
  69. [69] E. J. Oh, N. Wei, S. Kwak, H. Kim, and Y.-S. Jin, (2019) “Overexpression of RCK1 improves acetic acid tolerance in Saccharomyces cerevisiae" Journal of Biotechnology 292: 1–4. DOI: 10.1016/j.jbiotec.2018.12.013.
  70. [70] J. T. Cunha, C. E. Costa, L. Ferraz, A. Romanı, B. Johansson, I. Sá-Correia, and L. Domingues, (2018) “HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms" Applied microbiology and biotechnology 102: 4589–4600. DOI: 10.1007/s00253-018-8955-z.
  71. [71] H.-S. Kim, N.-R. Kim, J. Yang, and W. Choi, (2011) “Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae" Applied microbiology and biotechnology 91: 1159–1172. DOI: 10.1007/s00253-011-3298-z.
  72. [72] K. Deanda, M. Zhang, C. Eddy, and S. Picataggio, (1996) “Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering" Applied and Environmental Microbiology 62(12): 4465–4470. DOI: 10.1128/aem.62.12.4465-4470.1996.
  73. [73] M. Zhang, C. Eddy, K. Deanda, M. Finkelstein, and S. Picataggio, (1995) “Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis" Science 267(5195): 240–243. DOI: 10.1126/science.267.5195.240.
  74. [74] E. Joachimsthal, K. D. Haggett, and P. L. Rogers. “Evaluation of recombinant strains of Zymomonas mobilis for ethanol production from glucose/xylose media”. In: Twentieth Symposium on Biotechnology for Fuels and Chemicals: Presented as Volumes 77–79 of Applied Biochemistry and Biotechnology Proceedings of the Twentieth Symposium on Biotechnology for Fuels and Chemicals Held May 3–7, 1998, Gatlinburg, Tennessee. Springer. 1999, 147–157.
  75. [75] S. R. Kim, Y.-C. Park, Y.-S. Jin, and J.-H. Seo, (2013) “Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism" Biotechnology advances 31(6): 851–861. DOI: 10.1016/j.biotechadv.2013.03.004.
  76. [76] Y.-S. Jin, H. Ni, J. M. Laplaza, and T. W. Jeffries, (2003) “Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity" Applied and environmental Microbiology 69(1): 495–503. DOI: 10.1128/AEM.69.1.495-503.2003.
  77. [77] J. Lou, J. Wang, Y. Yang, Q. Yang, R. Li, M. Hu, Q. He, J. Du, X. Wang, M. Li, et al., (2021) “Development and characterization of efficient xylose utilization strains of Zymomonas mobilis" Biotechnology for biofuels 14(1): 1–18. DOI: 10.1186/s13068-021-02082-x.
  78. [78] Y.-J. Liu, B. Li, Y. Feng, and Q. Cui, (2020) “Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world" Biotechnology advances 40: 107535. DOI: 10.1016/j.biotechadv.2020.107535.
  79. [79] R. Yamada, T. Hasunuma, and A. Kondo, (2013) “Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing" Biotechnology advances 31(6): 754–763. DOI: 10.1016/j.biotechadv.2013.02.007.
  80. [80] D. G. Olson, J. E. McBride, A. J. Shaw, and L. R. Lynd, (2012) “Recent progress in consolidated bioprocessing" Current opinion in biotechnology 23(3): 396–405. DOI: 10.1016/j.copbio.2011.11.026.
  81. [81] W.-H. Lee and Y.-S. Jin, (2017) “Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation" Journal of biotechnology 245: 1–8. DOI: 10.1016/j.jbiotec.2017.01.018.
  82. [82] A. Madhavan, K. Arun, R. Sindhu, J. Krishnamoorthy, R. Reshmy, R. Sirohi, A. Pugazhendi, M. K. Awasthi, G. Szakacs, and P. Binod, (2021) “Customized yeast cell factories for biopharmaceuticals: From cell engineering to process scale up" Microbial Cell Factories 20(1): 124. DOI: 10.1186/s12934-021-01617-z.
  83. [83] B. Chen, H. L. Lee, Y. C. Heng, N. Chua, W. S. Teo, W. J. Choi, S. S. J. Leong, J. L. Foo, and M. W. Chang, (2018) “Synthetic biology toolkits and applications in Saccharomyces cerevisiae" Biotechnology advances 36(7): 1870–1881. DOI: 10.1016/j.biotechadv.2018.07.005.
  84. [84] J. T. Cunha, D. G. Gomes, A. Romani, K. Inokuma, T. Hasunuma, A. Kondo, and L. Domingues, (2021) “Cell surface engineering of Saccharomyces cerevisiae for simultaneous valorization of corn cob and cheese whey via ethanol production" Energy Conversion and Management 243: 114359. DOI: 10.1016/j.enconman.2021.114359.
  85. [85] E. Gnansounou and A. Dauriat, (2010) “Technoeconomic analysis of lignocellulosic ethanol: a review" Bioresource technology 101(13): 4980–4991. DOI: 10.1016/j.biortech.2010.02.009.
  86. [86] M. Galbe, P. Sassner, A. Wingren, and G. Zacchi, (2007) “Process engineering economics of bioethanol production" Biofuels: 303–327. DOI: 10.1007/10_2007_063.
  87. [87] F. C. Barba, R. M. Rodrıguez-Jasso, R. K. Sukumaran, H. A. Ruiz, et al., (2022) “High-solids loading processing for an integrated lignocellulosic biorefinery: Effects of transport phenomena and rheology–A review" Bioresource Technology: 127044. DOI: 10.1016/j.biortech.2022.127044.
  88. [88] H. J. Kadhum and G. S. Murthy, (2022) “Novel system design for high solid lignocellulosic biomass conversion" Bioresource Technology 350: 126897.
  89. [89] A. S. da Silva, R. P. Espinheira, R. S. S. Teixeira, M. F. de Souza, V. Ferreira-Leitao, and E. P. Bon, (2020) “Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: a critical review" Biotechnology for Biofuels 13(1): 1–28. DOI: 10.1186/s13068- 020-01697-w.
  90. [90] S. Chuetor, E. J. Panakkal, T. Ruensodsai, K. Cheenkachorn, S. Kirdponpattara, Y.-S. Cheng, and M. Sriariyanun, (2022) “Improvement of enzymatic saccharification and ethanol production from rice straw using recycled ionic liquid: The effect of anti-solvent mixture" Bioengineering 9(3): 115. DOI: 10.3390/bioengineering9030115.
  91. [91] M. Sriariyanun, N. Kitiborwornkul, P. Tantayotai, K. Rattanaporn, and P.-L. Show, (2022) “One-pot ionic liquid-mediated bioprocess for pretreatment and enzymatic hydrolysis of rice straw with ionic liquid-tolerance bacterial cellulase" Bioengineering 9(1): 17. DOI: 10.3390/bioengineering9010017.
  92. [92] C. Turnbull, M. Lillemo, and T. A. Hvoslef-Eide, (2021) “Global regulation of genetically modified crops amid the gene edited crop boom–a review" Frontiers in Plant Science 12: 630396. DOI: 10.3389/fpls.2021.630396.


    



 

1.6
2022CiteScore
 
 
60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.