Journal of Applied Science and Engineering

Published by Tamkang University Press


Impact Factor



Van-Vuong Dinh1,2, Dinh-Hoang Mai1, Minh-Duc Duong1, Quy-Thinh Dao1This email address is being protected from spambots. You need JavaScript enabled to view it.

1School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Dai Co Viet, Ha Noi, 11615, Vietnam

2Faculty of Electrical and Electronic Engineering, Hanoi College of High Technology, Ha Noi, 10000, Vietnam 


Received: May 16, 2023
Accepted: June 26, 2023
Publication Date: July 7, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||  

The field of rehabilitation robotics has seen a significant increase in the utilization of Pneumatic Artificial Muscle (PAM)-based systems in recent years. These systems have demonstrated great potential in assisting and enhancing human movements and motor functions. However, as with any system that involves human interaction, safety is of the utmost importance. It is essential to ensure that the tracking error is kept within a safe range to prevent harm to people and equipment. This research proposes a control strategy that combines the exponential reaching law with a prescribed performance function to enhance safety in PAM-based rehabilitation robots. The prescribed performance function is designed to regulate the tracking error within predetermined limits during short and long-term operations, thereby mitigating large oscillations that may damage mechanical structures and patients. The experimental results indicate that the proposed controller demonstrated superior tracking accuracy and safety performance compared to traditional control methods. It is hoped that the findings of this study will contribute to developing safe and effective rehabilitation systems for patients in need.

Keywords: Pneumatic artificial muscle, Enhance Safety, Prescribed performance function, Discrete-time sliding mode control

  1. [1] S. K. Banala, S. H. Kim, S. K. Agrawal, and J. P. Scholz. “Robot assisted gait training with active leg exoskeleton (ALEX)”. In: 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. 2008, 653–658. DOI: 10.1109/BIOROB.2008.4762885.
  2. [2] S. Hussain, S. Q. Xie, and P. K. Jamwal, (2013) “Control of a robotic orthosis for gait rehabilitation" Robotics and Autonomous Systems 61(9): 911–919. DOI: 10.1016/j.robot.2013.01.007.
  3. [3] P. Beyl, K. Knaepen, S. Duerinck, M. V. Damme, B. Vanderborght, R. Meeusen, and D. Lefeber, (2011) “Safe and Compliant Guidance by a Powered Knee Exoskeleton for Robot-Assisted Rehabilitation of Gait" Advanced Robotics 25(5): 513–535. DOI: 10.1163/016918611X558225.
  4. [4] S. Fisher, L. Lucas, and T. Thrasher, (2011) “RobotAssisted Gait Training for Patients with Hemiparesis Due to Stroke" Topics in stroke rehabilitation 18: 269–76. DOI: 10.1310/tsr1803-269.
  5. [5] T.-J. Yeh, M.-J. Wu, T.-J. Lu, F.-K. Wu, and C.-R. Huang, (2010) “Control of McKibben pneumatic muscles for a power-assist, lower-limb orthosis" Mechatronics 20(6): 686–697. DOI: 10.1016/j.mechatronics.2010.07.004.
  6. [6] D. Thinh and S.-i. Yamamoto, (2018) “Assist-as-Needed Control of a Robotic Orthosis Actuated by Pneumatic Artificial Muscle for Gait Rehabilitation" Applied Sciences 8: 499. DOI: 10.3390/app8040499.
  7. [7] R. Q. van der Linde, (1999) “Design, analysis, and control of a low power joint for walking robots, by phasic activation of McKibben muscles" IEEE transactions on robotics and automation 15(4): 599–604. DOI: 10.1109/70.781963.
  8. [8] M. Wisse, A. L. Schwab, R. Q. van der Linde, and F. C. van der Helm, (2005) “How to keep from falling forward: Elementary swing leg action for passive dynamic walkers" IEEE Transactions on robotics 21(3): 393–401. DOI: 10.1109/TRO.2004.838030.
  9. [9] I. Mizuuchi, H. Waita, Y. Nakanishi, T. Yoshikai, M. Inaba, and H. Inoue. “Design and implementation of reinforceable muscle humanoid”. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566). 1. IEEE. 2004, 828–833. DOI: 10.1109/IROS.2004.1389455.
  10. [10] K. Kawashima, T. Sasaki, A. Ohkubo, T. Miyata, and T. Kagawa. “Application of robot arm using fiber knitted type pneumatic artificial rubber muscles”. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004. 5. IEEE. 2004, 4937–4942. DOI: 10.1109/ROBOT.2004.1302500.
  11. [11] Y. Sodeyama, I. Mizuuchi, T. Yoshikai, Y. Nakanishi, and M. Inaba. “A shoulder structure of muscledriven humanoid with shoulder blades”. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2005, 4028–4033. DOI: 10.1109/IROS.2005.1545123.
  12. [12] T. G. Sugar, J. He, E. J. Koeneman, J. B. Koeneman, R. Herman, H. Huang, R. S. Schultz, D. Herring, J. Wanberg, S. Balasubramanian, et al., (2007) “Design and control of RUPERT: a device for robotic upper extremity repetitive therapy" IEEE transactions on neural systems and rehabilitation engineering 15(3): 336–346. DOI: 10.1109/TNSRE.2007.903903.
  13. [13] T.-Y. Choi and J.-J. Lee, (2009) “Control of manipulator using pneumatic muscles for enhanced safety" IEEE Transactions on Industrial Electronics 57(8): 2815– 2825. DOI: 10.1109/TIE.2009.2036632.
  14. [14] T. D. C. Thanh and K. K. Ahn, (2006) “Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network" Mechatronics 16(9): 577–587. DOI: 10.1016/j.mechatronics.2006.03.011.
  15. [15] G. Andrikopoulos, G. Nikolakopoulos, and S. Manesis, (2014) “Advanced Nonlinear PID-Based Antagonistic Control for Pneumatic Muscle Actuators" IEEE Transactions on Industrial Electronics 61(12): 6926–6937. DOI: 10.1109/TIE.2014.2316255.
  16. [16] S. Bembli, N. Haddad, and S. Belghith, (2021) “A Robust Model Free Terminal Sliding Mode with Gravity Compensation Control of a 2 DoF Exoskeleton-Upper Limb System": DOI: 10.1007/s40313-021-00687-z.
  17. [17] A. Mathias, M. Anila, and K. S. Sivanandan, (2021) “Comparison of SMC and PID Controllers for Pneumatically Powered Knee Orthosis" Journal of Control, Automation and Electrical Systems 32: DOI: 10.1007/ s40313-021-00775-0.
  18. [18] K. Xing, J. Huang, Y. Wang, J. Wu, Q. Xu, and J. He, (2010) “Tracking control of pneumatic artificial muscle actuators based on sliding mode and non-linear disturbance observer" Control Theory & Applications, IET 4: 2058–2070. DOI: 10.1049/iet-cta.2009.0555.
  19. [19] J. Lilly and P. Quesada, (2004) “A two-input slidingmode controller for a planar arm actuated by four pneumatic muscle groups" IEEE Transactions on Neural Systems and Rehabilitation Engineering 12(3): 349– 359. DOI: 10.1109/TNSRE.2004.831490.
  20. [20] J. Lilly and L. Yang, (2005) “Sliding mode tracking for pneumatic muscle actuators in opposing pair configuration" IEEE Transactions on Control Systems Technology 13(4): 550–558. DOI: 10.1109/TCST.2005.847333.
  21. [21] L. Zhao, Q. Li, B. Liu, and H. Cheng, (2019) “Trajectory Tracking Control of a One Degree of Freedom Manipulator Based on a Switched Sliding Mode Controller With a Novel Extended State Observer Framework" IEEE Transactions on Systems, Man, and Cybernetics: Systems 49(6): 1110–1118. DOI: 10.1109/TSMC.2017.2719057.
  22. [22] C. P. Vo, X. D. To, and K. K. Ahn, (2019) “A Novel Adaptive Gain Integral Terminal Sliding Mode Control Scheme of a Pneumatic Artificial Muscle System With Time-Delay Estimation" IEEE Access 7: 141133–141143. DOI: 10.1109/ACCESS.2019.2944197.
  23. [23] D. X. Ba and K. K. Ahn, (2015) “Indirect sliding mode control based on gray-box identification method for pneumatic artificial muscle" Mechatronics 32: 1–11. DOI: 10.1016/j.mechatronics.2015.09.005.
  24. [24] Q.-T. Dao and T.-K. L. Tri, (2022) “Discrete-time sliding mode control based on exponential reaching law of a pneumatic artificial muscle actuator" Journal of Mechanical Engineering (JMechE) 19(1): 221–238.
  25. [25] D. Thinh, L. Nguyen, and S.-i. Yamamoto, (2019) “Discrete-Time Fractional Order Integral Sliding Mode Control of an Antagonistic Actuator Driven by Pneumatic Artificial Muscles" Applied Sciences 9: 2503. DOI: 10.3390/app9122503.
  26. [26] R. Fellag, M. Hamerlain, S. Laghrouche, and N. Achour. “Adaptive discrete sliding mode control of a pneumatic artificial muscles robot”. In: 2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-B). 2017, 1–6. DOI: 10.1109/ICEEB.2017.8192099.
  27. [27] Q.-T. Dao, T.-K. Le Tri, V.-A. Nguyen, and M.-L. Nguyen, (2022) “Discrete-time sliding mode control with power rate exponential reaching law of a pneumatic artificial muscle system" Control Theory and Technology 20(4): 514–524. DOI: 10.1007/s11768-022-00117-8.
  28. [28] H. Xu and P. Ioannou, (2003) “Robust adaptive control for a class of MIMO nonlinear systems with guaranteed error bounds" IEEE Transactions on Automatic Control 48(5): 728–742. DOI: 10.1109/TAC.2003.811250.
  29. [29] Y. Zhu, J. Qiao, and L. Guo, (2019) “Adaptive Sliding Mode Disturbance Observer-Based Composite Control With Prescribed Performance of Space Manipulators for Target Capturing" IEEE Transactions on Industrial Electronics 66(3): 1973–1983. DOI: 10.1109/TIE.2018.2838065.
  30. [30] W. Wang, D. Wang, Z. Peng, and T. Li, (2016) “Prescribed Performance Consensus of Uncertain Nonlinear Strict-Feedback Systems With Unknown Control Directions" IEEE Transactions on Systems, Man, and Cybernetics: Systems 46(9): 1279–1286. DOI: 10.1109/TSMC.2015.2486751.
  31. [31] C. P. Bechlioulis and G. A. Rovithakis, (2008) “Robust Adaptive Control of Feedback Linearizable MIMO Nonlinear Systems With Prescribed Performance" IEEE Transactions on Automatic Control 53(9): 2090–2099. DOI: 10.1109/TAC.2008.929402.
  32. [32] Z. Li, X. Zhang, C.-Y. Su, and T. Chai, (2016) “Nonlinear Control of Systems Preceded by Preisach Hysteresis Description: A Prescribed Adaptive Control Approach" IEEE Transactions on Control Systems Technology 24(2): 451–460. DOI: 10.1109/TCST.2015.2441001.
  33. [33] G. Guo and D. Li, (2019) “Adaptive Sliding Mode Control of Vehicular Platoons With Prescribed Tracking Performance" IEEE Transactions on Vehicular Technology 68(8): 7511–7520. DOI: 10.1109/TVT.2019.2921816.
  34. [34] S. Wang, J. Na, and X. Ren, (2018) “RISE-Based Asymptotic Prescribed Performance Tracking Control of Nonlinear Servo Mechanisms" IEEE Transactions on Systems, Man, and Cybernetics: Systems 48(12): 2359–2370. DOI: 10.1109/TSMC.2017.2769683.
  35. [35] E. Psomopoulou, A. Theodorakopoulos, Z. Doulgeri, and G. A. Rovithakis, (2015) “Prescribed Performance Tracking of a Variable Stiffness Actuated Robot" IEEE Transactions on Control Systems Technology 23(5): 1914–1926. DOI: 10.1109/TCST.2015.2394748.
  36. [36] H. J. Asl, T. Narikiyo, and M. Kawanishi. “Prescribed performance velocity field control of robotic exoskeletons with neural network”. In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). 2017, 2704–2709. DOI: 10.1109/ROBIO.2017.8324828.
  37. [37] Y. Cao, J. Huang, and M. Zhang. “Prescribed Performance-based Chattering-free Tracking Control for Pneumatic Muscle Actuators”. In: 2021 IEEE 11th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). 2021, 355–360. DOI: 10.1109/CYBER53097.2021.9588137.
  38. [38] D. Reynolds, D. Repperger, C. Phillips, and G. Bandry, (2003) “Modeling the Dynamic Characteristics of Pneumatic Muscle" Annals of biomedical engineering 31: 310–7. DOI: 10.1114/1.1554921.
  39. [39] M. L. Nguyen, X. Chen, and F. Yang, (2018) “DiscreteTime Quasi-Sliding-Mode Control With Prescribed Performance Function and its Application to Piezo-Actuated Positioning Systems" IEEE Transactions on Industrial Electronics 65(1): 942–950. DOI: 10.1109/TIE.2017.2708024.
  40. [40] R. Riener, L. Lunenburger, S. Jezernik, M. Anderschitz, G. Colombo, and V. Dietz, (2005) “Patientcooperative strategies for robot-aided treadmill training: first experimental results" IEEE Transactions on Neural Systems and Rehabilitation Engineering 13(3): 380–394. DOI: 10.1109/TNSRE.2005.848628.