Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Satish T. Rathod and Kalpana PawarThis email address is being protected from spambots. You need JavaScript enabled to view it.

Department of Mathematics, Shri R. R. Lahoti Science College, Morshi-444905, Dist. Amravati, M. S., India


 

Received: January 11, 2023
Accepted: March 1, 2023
Publication Date: June 12, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202401_27(1).0012  


In this paper, we have studied the Einstein Field equation in Kaluza-Klein space-time in five dimension with the metric dS2 = dt2 − A2 (dx2 + dy2 + dz2)− B22 under the assumption that B = αt, where α = Constant and scale factor satisfying the relation R4 = A3B with perfect fluid having energy momentum tensor Tij = (ρ + p)vivj − pgij
In this paper, we have assumed that G =|1/t and we have found the value of cosmological constant Λ is a function time t in terms of hyper geometric function.

 


Keywords: Kaluza-Klein space-time in five-dimension, perfect fluid, Hypergeometric Function, variable cosmological


  1. [1] T. Kaluza, (1921) “Sitzungsber" Abhandlungen der Königlich Preussischen Akademie der Wissenschaften 996: 1921.
  2. [2] O. Klein. “QUANTUM THEORY AND FIVEDIMENSIONAL RELATIVITY THEORY”. In: The Oskar Klein Memorial Lectures, 67–80. DOI: 10.1142/9789814368728_0006. eprint: https://www.worldscientific.com/doi/pdf/10.1142/9789814368728_0006.
  3. [3] F. R. MILLER and N. B. LAUGHTON, (1926) “The Rôle of the Cerebellum in the Co-ordination of Animal Movement" Nature 118(2971): 516–517. DOI: 10.1038/118516b0.
  4. [4] P. G. Freund, (1982) “Kaluza-Klein cosmologies" Nuclear Physics B 209(1): 146–156. DOI: https://doi.org/10.1016/0550-3213(82)90106-7.
  5. [5] T. Dereli and R. Tucker, (1983) “Dynamical reduction of internal dimensions in the early universe" Physics Letters B 125(2): 133–135. DOI: https://doi.org/10.1016/0370-2693(83)91252-2.
  6. [6] E. Alvarez and M. B. Gavela, (1983) “Entropy from Extra Dimensions" Phys. Rev. Lett. 51: 931–934. DOI: 10.1103/PhysRevLett.51.931.
  7. [7] R. Bergamini and C. A. Orzalesi, (1984) “Towards a cosmology for multidimensional unified theories" Physics Letters B 135(1): 38–42. DOI: https://doi.org/10.1016/0370-2693(84)90449-0.
  8. [8] S. Randjbar-Daemi, A. Salam, and J. Strathdee, (1984) “On Kaluza-Klein cosmology" Physics Letters B 135(5): 388–392. DOI: https://doi.org/10.1016/0370 -2693(84)90300-9.
  9. [9] A. Chodos and S. Detweiler, (1980) “Where has the fifth dimension gone?" Phys. Rev. D 21: 2167–2170. DOI: 10.1103/PhysRevD.21.2167.
  10. [10] P. A. M. DIRAC, (1937) “The Cosmological Constants" Nature 139(3512): 323. DOI: 10.1038/139323a0.
  11. [11] S. Oli, (2014) “Five-Dimensional Space-Times with a Variable Gravitational and Cosmological Constant" Journal of Gravity 2014: 874739. DOI: 10.1155/2014/874739.
  12. [12] R. K. Tiwari, F. Rahaman, and S. Ray, (2010) “Five Dimensional Cosmological Models in General Relativity" International Journal of Theoretical Physics 49(10):2348–2357. DOI: 10.1007/s10773-010-0421-3.
  13. [13] S. T. Rathod and K. Pawar, (2007) “Five-Dimensional Cosmological Model in presence of Perfect Fluid with G is proportional to t−1" Romanian Journal of Physics 52: 445