Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Gafur Gulyamov, Gulnoza Majidova, and Feruza MuhitdinovaThis email address is being protected from spambots. You need JavaScript enabled to view it.

Namangan Engineering Construction Institute


 

Received: December 12, 2022
Accepted: March 4, 2023
Publication Date: May 3, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.


Download Citation: ||https://doi.org/10.6180/jase.202401_27(1).0007  


Diodes are widely used in engineering. Therefore, it is very important to study the sensitivity of the characteristics to external influences. In this work, the influence of a magnetic field on the current-voltage characteristics (CVC) of a diode with a p-n junction is studied. Under the action of a magnetic field, the CVC of the diode, obtained in the experiments, shifted to the right. Under the action of a magnetic field, a decrease in current was observed even at high voltages. The theoretical foundations of this physical process have not been described in previous works. We explained these processes by the following reasons: the appearance of additional resistance at the p–n junction due to the magnetoresistance effect. As a result, the resistance of the diode increases, and the current also changes as a result of the Hall effect. The Lorentz force in a magnetic field affects the direction of movement of charge carriers in a space charge. This causes a change in the shape of the space charge and an increase in the potential barrier. These theoretical foundations were calculated from formulas and compared with experiments. In addition, changes in CVC in a magnetic field are also related to the coefficient of imperfection. The coefficient of imperfection depends on the diffusion length. The magnetic field affects the diffusion length. As a result, we explain the changes in CVC depending on the diffusion length by the nonideality coefficient. The change in the space charge of the diode under the action of a magnetic field can be explained by the Hall voltage, and the change in CVC can be explained by the magnetoresistance and the nonideality coefficient. Theoretical foundations are compared with experimental results and correspondences are determined. Conclusions are drawn from the compatibility of experience and our theoretical basis


Keywords: p-n junction, current-voltage characteristic, magnetic field, Hall voltage, imperfection coefficient, potential


  1. [1] G. Gulyamov, U. I. Erkaboev, N. Y. Sharibaev, and A. G. Gulyamov, (2019) “EMF Induced in a p–n Junction under a Strong Microwave Field and Light" Semiconductors 53(3): 375–378. DOI: 10.1134/S1063782619030060.
  2. [2] G. Gulyamov, A. G. Gulyamov, and U. I. Erkaboev, (2018) “Thermal Stimulation of Photocurrent in p–n Junctions" Applied Solar Energy 54(5): 338–340. DOI: 10.3103/S0003701X18050079.
  3. [3] X. Feng, X. Zhao, L. Yang, M. Li, F. Qie, J. Guo, Y. Zhang, T. Li, W. Yuan, and Y. Yan, (2018) “All carbon materials pn diode" Nature Communications 9(1):3750. DOI: 10.1038/s41467-018-06150-z.
  4. [4] G. Gulyamov and A. G. Gulyamov, (2015) “On the tensosensitivity of a p-n junction under illumination"Semiconductors 49(6): 819–822. DOI: 10.1134/S1063782615060111.
  5. [5] S. H. Shamirzaev, G. Gulyamov, M. G. Dadamirzaev, and A. G. Gulyamov, (2009) “Eddy currents in the p–n junction in a microwave field" Semiconductors 43(9): 1170–1173. DOI: 10.1134/S1063782609090127.
  6.  [6] T. Tuan, D.-H. Kuo, C.-C. Li, and G.-Z. Li, (2015) “Effect of Temperature Dependence on Electrical Characterization of p-n GaN Diode Fabricated by RF Magnetron Sputtering" Materials Sciences and Applications 6: 809–817. DOI: 10.4236/msa.2015.69083.
  7. [7] G. J. Monkman, D. Sindersberger, and N. Prem, (2022) “Magnetically enhanced photoconductive high voltage control" ISSS Journal of Micro and Smart Systems 11(1): 317–328. DOI: 10.1007/s41683-021-00088-z.
  8. [8] J. Xu, M. K. Ma, M. Sultanov, Z.-L. Xiao, Y.-L.Wang, D. Jin, Y.-Y. Lyu, W. Zhang, L. N. Pfeiffer, K. W. West, K.W. Baldwin, M. Shayegan, andW.-K. Kwok, (2019) “Negative longitudinal magnetoresistance in gallium arsenide quantum wells" Nature Communications 10(1): 287. DOI: 10.1038/s41467-018-08199-2.
  9. [9] Z. Luo and X. Zhang, (2017) “Magnetic logic based on diode-assisted magnetoresistance" AIP Advances 7(5): 055920. DOI: 10.1063/1.4975046.
  10. [10] Z. Wang, L. Yang, X. Zhao, Z. Zhang, and X. P. A. Gao, (2015) “Linear magnetoresistance versus weak antilocalization effects in Bi2Te3" Nano Research 8(9): 2963–2969. DOI: 10.1007/s12274-015-0801-3.
  11. [11] L. Chang, X. Wang, Y. Zhang, H. Li, and Y. Yan, (2018) “Magnetoresistance of a self-assembled polyaniline single microfiber" Journal of Materials Science 53(20): 14850–14857. DOI: 10.1007/s10853-018-2640-6.
  12. [12] K. Shrestha, V. Marinova, D. Graf, B. Lorenz, and C.W. Chu, (2017) “Large magnetoresistance and Fermi surface study of Sb2Se2Te single crystal" Journal of Applied Physics 122(12): 125901. DOI: 10.1063/1.4998575.
  13. [13] D. Ding, X. Dai, C.Wang, and D. Diao, (2020) “Temperature dependent crossover between positive and negative magnetoresistance in graphene nanocrystallines embedded carbon film" Carbon 163: 19–25. DOI: https ://doi.org/10.1016/j.carbon.2020.03.022.
  14. [14] K. Zhang, H.-h. Li, P. Grünberg, Q. Li, S.-t. Ye, Y.-f. Tian, S.-s. Yan, Z.-j. Lin, S.-s. Kang, Y.-x. Chen, G.-l. Liu, and L.-m. Mei, (2015) “Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions" Scientific Reports 5(1): 14249. DOI: 10.1038/srep14249.
  15. [15] Y. Zhang, J. Fan, Q. Huang, J. Zhu, Y. Zhao, M. Li, Y. Wu, and R. Huang, (2018) “Voltage-Controlled Magnetoresistance in Silicon Nanowire Transistors" Scientific Reports 8(1): 15194. DOI: 10.1038/s41598-018-33673-8.
  16. [16] M. P. Delmo, E. Shikoh, T. Shinjo, and M. Shiraishi, (2013) “Bipolar-driven large linear magnetoresistance in silicon at low magnetic fields" Phys. Rev. B 87: 245301. DOI: 10.1103/PhysRevB.87.245301.
  17. [17] J. Panda, P. Banerjee, and T. K. Nath, (2014) “Electrical spin extraction and giant positive junction magnetoresistance in a Fe3O4/MgO/n-Si magnetic diode like heterostructure" Journal of Physics D: Applied Physics 47(41): 415103. DOI: 10.1088/0022- 3727/47/41/415103.
  18. [18] L. H. Wu, X. Zhang, J. Vanacken, N. Schildermans, C. H. Wan, and V. V. Moshchalkov, (2011) “Roomtemperature nonsaturating magnetoresistance of intrinsic bulk silicon in high pulsed magnetic fields" Applied Physics Letters 98(11): 112113. DOI: 10.1063/1.3569139.
  19. [19] L. Botsch, I. Lorite, Y. Kumar, P. Esquinazi, T. Michalsky, J. Zajadacz, and K. Zimmer. Spin-filter effect at the interface of magnetic/non-magnetic homojunctions in Li doped ZnO nanostructures. 2017. arXiv: 1705.08124 [cond-mat.mes-hall].
  20. [20] T. Wang, M. Si, D. Yang, Z. Shi, F. Wang, Z. Yang, S. Zhou, and D. Xue, (2014) “Angular dependence of the magnetoresistance effect in a silicon based p–n junction device" Nanoscale 6: 3978–3983. DOI: 10.1039/C3NR04077A.
  21. [21] J. J. H. M. Schoonus, F. L. Bloom, W. Wagemans, H. J. M. Swagten, and B. Koopmans, (2008) “Extremely Large Magnetoresistance in Boron-Doped Silicon" Phys. Rev. Lett. 100: 127202. DOI:10.1103 /PhysRevLett.100.127202.
  22. [22] T. Wang, D. Yang, M. Si, F. Wang, S. Zhou, and D. Xue, (2016) “Magnetoresistance Amplification Effect in Silicon Transistor Device" Advanced Electronic Materials 2(9): 1600174. DOI: https://doi.org/10.1002/aelm.201600174. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/aelm.201600174.
  23. [23] D. Yang, F. Wang, Y. Ren, Y. Zuo, Y. Peng, S. Zhou, and D. Xue, (2013) “A Large Magnetoresistance Effect in p–n Junction Devices by the Space-Charge Effect" Advanced Functional Materials 23(23): 2918–2923. DOI: https://doi.org/10.1002/adfm.201202695. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201202695.
  24. [24] C.Wan, X. Zhang, X. Gao, J.Wang, and X. Tan, (2011) “Geometrical enhancement of low-field magnetoresistance in silicon" Nature 477(7364): 304–307. DOI: 10.1038/nature10375.
  25. [25] C. Xiong, Z. Lu, S. Yin, H. Mou, and X. Zhang, (2019) “Magnetic field controlled hybrid semiconductor and resistive switching device for non-volatile memory applications" AIP Advances 9(10): 105030. DOI: 10.1063/1.5063734.
  26. [26] G. Egiazaryan and V. Stafeev. Magnetodiodes and Magnetoresistors and Their Application. Radio i Svyaz’, Moscow, 1987.
  27. [27] G. Pikus. Principles of the theory of semiconductor devices. Nauka, Moscow, 1965.
  28. [28] J. Chen, X. Zhang, Z. Luo, J. Wang, and H.-G. Piao, (2014) “Large positive magnetoresistance in germanium" Journal of Applied Physics 116(11): 114511. DOI: 10.1063/1.4896173.