Yongzhi Wang1,2This email address is being protected from spambots. You need JavaScript enabled to view it., Mengrou Yu2, Hui Wang3, and Baojuan Wang1  

1School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou, China
2School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, China
3Provincial Geomatics Center of Jiangsu, Nanjing, China


Received: June 10, 2022
Accepted: September 15, 2022
Publication Date: May 2, 2023

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||https://doi.org/10.6180/jase.202312_26(12).0013  

To improve the accuracy of the calculation for the current mineral resource reserves, a calculation method for mineral resource reserves based on multi-point geostatistics was proposed The new method, including four major steps, focuses on calculating resource reserves of ore body accurately for rational development and utilization of mineral resources. To represent the spatial geometric relationship of the ore body accurately, a three-dimensional irregular tetrahedron voxel (3D ITV) model construction method for the ore body is proposed first. Second, a tetrahedron voxel grade model built by the mineral reservation calculation oriented multi-point geostatistics method is proposed. The construction of 3D training image, definition of data template with N-order adjacency voxels, construction of search trees and conditional probability extraction of data event are conducted in this step. Finally, the resource reserves of the ore body are calculated on the basis of the tetrahedron voxel grade model. A calculation experiment of copper reserves is conducted to demonstrate the validity of the new method. The new method can be meaningful to the exploration, development, and utilization of mineral resources. 

Keywords: Mineral reserve calculation, multi-point geostatistics, 3D irregular tetrahedron voxel model, 3D training images

  1. [1] X. Huang, X. Li, K. Hu, Y. Liu, and D. Liu, (2012) “Status and Achievement of the Green Mine in China" International Proceedings of Chemical Biological & Environmental Science and Development (ICESD):
  2. [2] A. Valero, A. Valero, and G. M. Mudd. “Exergy-a useful indicator for the sustainability of mineral resources and mining”. In: SDIMI Conference Gold Coast. 2009.
  3. [3] F.-W. Wellmer, J. D. Becker-Platen, D. J. Shields, J. A. Briskey, K. J. Schulz, J. P. Mosesso, L. R. Horwitz, C. G. Cunningham, P. F. Langhammer,W. J. Bawiec, et al., (2007) “Proceedings for a Workshop on Deposit Modeling, Mineral Resource Assessment, and Their Role in Sustainable Development" Guizhou Ethnic Studies: DOI: 10.3133/cir1294.
  4. [4] M. Khaidir Noor. “Ore Reserve Estimation of Saprolite Nickel Using Inverse Distance Method in PIT Block 3A Banggai Area Central Sulawesi”. In: 979.1. Cited by: 0; All Open Access, Gold Open Access.2018. DOI: 10.1088/1742-6596/979/1/012047.
  5. [5] R. d. S. Machado and J. F. C. L. Costa, (2019) “Field parametric geostatistics-an alternative to tackle gold grade estimations" Revista Escola de Minas 72(1): 167–172. DOI: 10.1590/0370-44672018720085.
  6. [6] B. Samanta, S. Bandopadhyay, and R. Ganguli, (2002) “Data segmentation and genetic algorithms for sparse data division in Nome placer gold grade estimation using neural network and geostatistics" Exploration and Mining Geology 11(1-4): 69–76. DOI: 10.2113/11.1-4.69.
  7. [7] D. Silva and J. Almeida, (2017) “Geostatistical methodology to characterize volcanogenic massive and stockwork ore deposits" Minerals 7(12): DOI: 10.3390/min7120238.
  8. [8] S. Strebelle, (2002) “Conditional simulation of complex geological structures using multiple-point statistics" Mathematical Geology 34(1): 1–21. DOI: 10.1023/A:1014009426274.
  9. [9] C. Castañón, D. Arias, I. Diego, A. Martin-Izard, and Y. Ruiz, (2017) “Resource and reserve calculation in seam-shaped mineral deposits; a new approach: “The pentahedral method”" Minerals 7(5): DOI: 10.3390/min7050072.
  10. [10] H. Anhar and F. Khalifani. Evaluation of Mineral Reserves.2018.
  11. [11] R. Wang, L. Li, D.-W. Zhou, Z.-G. Lu, H.-M. Deng, and S.-A. Ke, (2019) “Calculation of Rare Earth Ore Reserves by Geostatistics" Chinese Rare Earths 40(2): 35–41. DOI: 10.16533/J.CNKI.15-1099/TF.20190001.
  12. [12] S. Haldar. “Chapter 8 - Mineral Resource and Ore Reserve Estimation”. In: Mineral Exploration. Ed. by S. Haldar. Boston: Elsevier, 2013, 137–155. DOI: https://doi.org/10.1016/B978-0-12-416005-7.00008-8.
  13. [13] L. Shu, Y. Cheng, L. Wang, J. Jiang, Q. Zhai, and S. Kong, (2011) “Research on influence of geological factors on gas storage in coal seam" China Safety Science Journal 21(02):
  14. [14] J. Hou and G. Guo, (1993) “Theory and Apply of Statistical Prediction of Deposits and Geostatistics" Metallurgical Industry Press: 325–327.
  15. [15] X. Gong, (2019) “3D Geological Modeling and Resource Estimation of Laotianzhuang Manganese Deposit in Chongqing" Chengdu University of Technology:
  16. [16] L. Coppa, E. Green, and C. Quan, (1984) “Geostatistics for Resource/Reserve Estimation."
  17. [17] F. Bastante, J. Taboada, L. Alejano, and C. Ordóñez, (2005) “Evaluation of the resources of a slate deposit using indicator kriging" Engineering Geology 81(4): 407–418. DOI: 10.1016/j.enggeo.2005.08.003.
  18. [18] G.Wang, Z. Pang, J. B. Boisvert, Y. Hao, Y. Cao, and J. Qu, (2013) “Quantitative assessment of mineral resources by combining geostatistics and fractal methods in the Tongshan porphyry Cu deposit (China)" Journal of Geochemical Exploration 134: 85–98. DOI: 10.1016/j.gexplo.2013.08.004.
  19. [19] A Study of Coupling Surface Network to Reservoir Simulation Model in a Large Middle East Field. All Days. SPE North Africa Technical Conference and Exhibition. SPE-127976-MS. 2010. DOI: 10.2118/127976-MS. eprint: https://onepetro.org/SPENATC/proceedings-pdf/10NATC/All-10NATC/SPE-127976-MS/1764218/spe-127976-ms.pdf.
  20. [20] S. KASMAEE, J. GHOLAMNEJAD, A. YARAHMADI,and H. MOJTAHEDZADEH, (2010) “Reserve estimation of the high phosphorous stockpile at the Choghart iron mine of Iran using geostatistical modeling" Mining Science and Technology (China) 20(6):855–860. DOI: https://doi.org/10.1016/S1674 -5264(09)60295-7.
  21. [21] A. E. Tercan, B. Ünver, M. A. Hindistan, G. Ertunç, F. Atalay, S. Ünal, and Y. Killio ˇ glu, (2013) “Seam modeling and resource estimation in the coalfields of western Anatolia" International Journal of Coal Geology 112: 94–106. DOI: 10.1016/j.coal.2012.10.006.
  22. [22] K. Modis, S. Stavrou, N. Terezopoulos, and D. Vattis, (2008) “Geostatistics versus inverse distance squares in ore reserves estimation: Comparative case study in copper ore body in Cyprus" Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology 117(1): 48–52. DOI:10.1179/174328607X228866.
  23. [23] S. Talesh Hosseini, O. Asghari, S. A. Torabi, and M.Abedi, (2020) “An Optimum Selection of Simulated Geological Models by Multi-Point Geostatistics and Multi-Criteria Decision-Making Approaches; a Case Study in Sungun Porphyry-Cu deposit, Iran" Journal of Mining and Environment 11(2): 481–503. DOI: 10.22044/JME.2020.8710.1757.
  24. [24] L. Hu and T. Chugunova, (2008) “Multiple-point geostatistics for modeling subsurface heterogeneity: A comprehensive review" Water Resources Research 44(11): DOI: 10.1029/2008WR006993.
  25. [25] G. Mariethoz and J. Caers. Multiple-point Geostatistics: Stochastic Modeling with Training Images. 9781118662755. Cited by: 313. 2014, 1–364. DOI: 10.1002/9781118662953.
  26. [26] T. ZHANG, (2008) “Incorporating Geological Conceptual Models and Interpretations into Reservoir Modeling Using Multiple-Point Geostatistics" Earth Science Frontiers 15(1): 26–35. DOI: https://doi.org/10.1016/S1872-5791(08)60016-0.
  27. [27] P. W. Mirowski, D. M. Tetzlaff, R. C. Davies, D. S. McCormick, N. Williams, and C. Signer, (2009) “Stationarity scores on training images for multipoint geostatistics" Mathematical Geosciences 41(4): 447–474. DOI: 10.1007/s11004-008-9194-0.
  28. [28] S. Strebelle, (2002) “Conditional simulation of complex geological structures using multiple-point statistics" Mathematical Geology 34(1): 1–21. DOI: 10.1023/A:1014009426274.
  29. [29] H. Si, (2015) “TetGen, a delaunay-based quality tetrahedral mesh generator" ACM Transactions on Mathematical Software 41(2): DOI: 10.1145/2629697.
  30. [30] Y. Wang, H. Zhao, Y. Sheng, and N. Kang, (2015) “Construction and application of 3d geological models for attribute-oriented information expression" Journal of Applied Science and Engineering 18(4): 315–322. DOI: 10.6180/jase.2015.18.4.01.
  31. [31] P. Boguslawski, C. M. Gold, and H. Ledoux, (2011) “Modelling and analysing 3D buildings with a primal/dual data structure" ISPRS Journal of Photogrammetry and Remote Sensing 66(2): 188–197. DOI: 10.1016/j.isprsjprs.2010.11.003.
  32. [32] Y. Yin, C. Zhang, and S. Li, (2013) “Principle, method and application of multi-point geostatistics" Geology press:
  33. [33] J. Li, M. Wang, F. Wang, P. Yao, J. Liang, G. Tang, X. Zhu, G. Ma, G. Zou, Z. Shen, et al., (2010) “Characteristics of ductile shear-type disseminated ores in Heiniudong copper deposit, Jiulong County, Sichuan Province" Mineral  Deposits 29(5): 853–868. DOI: 10.1360/972010-741.
  34. [34] M. Chen, J. Ding, X. Zhu, G. Ma, P. Yao, and J. Li, (2013) “Geological and geochemical characteristics and its ore-forming mechanism of Heiniudong copper deposit, Jiulong, Sichuan" Mineral Resources and Geology 27(6): 479–486.
  35. [35] F. Cao, (2016) “The study on Geological characteristics and Genesis of Heiniudong Cu deposit in Jiulong country, Sichuan Province, China" Chengdu University of Technology: