Journal of Applied Science and Engineering

Published by Tamkang University Press


Impact Factor



Muhammad Arif Budiyanto This email address is being protected from spambots. You need JavaScript enabled to view it.1 and Alif Hikmah Fikri1

1Department of Mechanical Engineering, Universitas Indonesia, Kampus Baru UI Depok Jawa Barat, Indonesia, 16424


Received: August 22, 2021
Accepted: December 1, 2021
Publication Date: January 18, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||  


The objective of this paper is to carry out the performance test of the Unmanned Surface Vehicle Model (USVM) for the purpose to marine observation objects. The USVM was developed using semi-planing hull models with the dimension is length overall 1.5 meters, breadth 0.4 meters, height 0.3 meters, and draught 0.06 meters. The USVM is controlled with a short-range and long-range control system using a wireless internet network. Performance tests that have been carried out include ship propulsion tests, maneuver tests and control system tests. The results show that the USVM can operate with good performance to observe a marine object with a maximum operation time is 25 minutes using a long-range control system.

Keywords: Unmanned Surface Vehicle, marine observation objects, semi-planing hull, propulsion test, control system


  1. [1] A. Finn and S. Scheding. Developments and challenges for autonomous unmanned vehicles. en. Intelligent systems reference library. Berlin, Germany: Springer, 2010. DOI: 10.1007/978-3-642-10704-7.
  2. [2] R. S. Wadhwa, (2012) “Flexibility in manufacturing automation: A living lab case study of Norwegian metalcasting SMEs" J. Manuf. Syst. 31(4): 444–454. DOI:10.1016/j.jmsy.2012.07.008.
  3. [3] H. Ghaderi, (2019) “Autonomous technologies in short sea shipping: trends, feasibility and implications" Transp. Rev. 39(1): 152–173.
  4. [4] R.-J. Yan, S. Pang, H.-B. Sun, and Y.-J. Pang, (2010)  “Development and missions of unmanned surface vehicle" J. Mar. Sci. Appl. 9(4): 451–457. DOI: 10.1007/s11804-010-1033-2.
  5. [5] B. Martin, D. C. Tarraf, T. C. Whitmore, J. DeWeese, C. Kenney, J. Schmid, and P. DeLuca. Advancing autonomous systems: an analysis of current and future technology for unmanned maritime vehicles. Tech. rep. Rand Corporation, 2019.
  6. [6] V. Bertram. Unmanned Surface Vehicles-A Survey. 2008.
  7. [7] H. Mousazadeh, J. Hamid, O. Elham, M. Farshid, K. Ali, S.-Z. Yousef, and M. Ashkan, (2017) “Experimental evaluation of a hydrography surface vehicle in four navigation modes" J. Ocean Eng. Sci. 2(2): 127–136. DOI: 10.1016/j.joes.2017.05.003.
  8. [8] J. E. Manley. “Unmanned surface vehicles, 15 years of development”. In: OCEANS 2008. Quebec City, QC, Canada: IEEE, 2008. DOI: 10.1109/OCEANS. 2008.5152052.
  9. [9] G. Go and H. T. Ahn, (2019) “Hydrodynamic derivative determination based on CFD and motion simulation for a tow-fish" Appl. Ocean Res. 82: 191–209. DOI: 10.1016/j.apor.2018.10.023.
  10. [10] C. Zhang, C. Guo, and D. Zhang, (2018) “Ship navigation via GPS/IMU/LOG integration using adaptive fission particle filter" Ocean Eng. 156: 435–445. DOI: 10.1016/j.oceaneng.2018.03.012.
  11. [11] J. Zhang, Y. Han, C. Zheng, and D. Sun, (2016) “Underwater target localization using long baseline positioning system" Appl. Acoust. 111: 129–134. DOI: 10.1016/j.apacoust.2016.04.009.
  12. [12] E. I. Sarda and M. R. Dhanak, (2016) “A USV-Based automated launch and recovery system for AUVs" IEEE journal of oceanic engineering 42(1): 37–55. DOI: 10.1109/JOE.2016.2554679.
  13. [13] K. Zwolak, B. Simpson, B. Anderson, E. Bazhenova, R. Falconer, T. Kearns, H. Minami, J. Roperez, A. Rosedee, H. Sade, N. Tinmouth, R. Wigley, and Y. Zarayskaya. “An unmanned seafloor mapping system: The concept of an AUV integrated with the newly designed USV SEA-KIT”. In: OCEANS 2017 - Aberdeen. Aberdeen, United Kingdom: IEEE, 2017. DOI: 10.1109/OCEANSE.2017.8084899.
  14. [14] E. Lachaud, Y. Monbeig, P. Nolleau, A. Hardy, M. Thompson, and M. Lardeux. “Opportunities and challenges of remote operating a ROV embarked on a USV”. In: Day 4 Thu, May 03, 2018. Houston, Texas, USA: OTC, 2018. DOI: 10.4043/29000-ms.
  15. [15] A. Lebkowski, R. Smierzchalski, W. Gierusz, and K. Dziedzicki, (2008) “Intelligent ship control system" International Journal on Marine Navigation and Safety of Sea Transportation-TransNav 2(1): 63.
  17. [17] S. Jung et al., (2017) “Sailing with a ghost ship: Design guidelines for developing supervisory control interfaces for the semi-autonomous cargo vessel system":
  18. [18] J. Anderson, D.-J. Lee, R. Schoenberger, Z.Wei, and J. Archibald. “Semi-autonomous unmanned ground vehicle control system”. In: Unmanned Systems Technology VIII. Ed. by G. R. Gerhart, C. M. Shoemaker, and D.W. Gage. Orlando (Kissimmee), FL: SPIE, 2006. DOI: 10.1117/12.666500.
  19. [19] G. Vojkovi´c and M. Milenkovi´c, (2020) “Autonomous ships and legal authorities of the ship master" Case stud.transp. policy 8(2): 333–340. DOI: 10.1016/j.cstp.2019.12.001.
  20. [20] D. J. Fagnant and K. Kockelman, (2015) “Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations" Transp. Res. Part A Policy Pract. 77: 167–181. DOI: 10.1016/j.tra.2015.04.003.
  21. [21] Ø. J. Rødseth and K. Lee. “Secure communication for e-navigation and remote control of unmanned ships”. In: Proc. of the 14th Conference on Computer and IT Applications in the Maritime Industries-COMPIT. 15.2015.
  22. [22] H. Ringbom, (2019) “Regulating autonomous ships—concepts, challenges and precedents" Ocean Development & International Law 50(2-3): 141–169. DOI: 10.1080/00908320.2019.1582593.
  23. [23] F. Balsamo, Dipartimento di Ingegneria Navale, Università degli sudi di Napoli “Federico II”, IT, S. Milanesi, C. Pensa, Dipartimento di Ingegneria Navale, Università degli sudi di Napoli “Federico II”, IT, and Dipartimento di Ingegneria Navale, Università degli sudi di Napoli “Federico II”, IT. “Rolling dynamics in planing and semi-planing range”. In: FAST 2001.RINA, 2001.
  24. [24] A. Hikmah Fikri, A. Mufin Rosyadi, A. Finkan Septa, A. Syahidah, A. Rahman, B. Arya Tjitrosoemarto, F. Azharrisman, F. IsmailWibisono, F. Alamsyah, F. Rahmatunnisa, F. Muhamad, G. TanjungWijaya, G. Missrani, H. Matthew, I. Rahadi Kurnianto, J. Alviando, M. Khoir Shilahul Umam, M. Arif Budiyanto, M. Miftah Farid, and Y. Dwi Adityaputra. Makara 09 Mark II-Autonomous Surface Vehicle. 2019.
  25. [25] M. A. Budiyanto, J. Novri, M. I. Alhamid, and Ardiyansyah. “Analysis of convergent and divergentconvergent nozzle of waterjet propulsion by CFD simulation”. In: Bali, Indonesia: Author(s), 2019. DOI: 10.1063/1.5086613.
  26. [26] M. A. Budiyanto, M. F. Syahrudin, and M. A. Murdianto, (2020) “Investigation of the effectiveness of a stern foil on a patrol boat by experiment and simulation" Cogent Eng. 7(1): 1716925. DOI: 10.1080/23311916.2020.1716925.
  27. [27] M. A. Budiyanto, M. A. Murdianto, and M. F. Syahrudin, (2020) “Study on the resistance reduction on high-speed vessel by application of stern foil using CFD simulation" CFD Lett. 12(4): 35–42. DOI: 10.37934/cfdl.12.4.3542.
  28. [28] URL:
  29. [29] A. K. Kumar and K. M. Sivalingam. “Energy-efficient mobile data collection inWireless Sensor Networks with delay reduction using wireless communication”. In: 2010 Second International Conference on COMmunication Systems and NETworks (COMSNETS 2010). Bangalore, India: IEEE, 2010. DOI: 10.1109/COMSNETS.2010.5431982.
  30. [30] J. Wajs and D. Kasza. “Development of low-cost Unmanned Surface Vehicle system for bathymetric measurements”. In: IOP Conference Series: Earth and Environmental Science. 684. 1. IOP Publishing. 2021,012033. DOI: 10.1088/1755-1315/684/1/012033.
  31. [31] D. T. Ghalid, O. K. El-Amary, R. S. Jo, and H. Nugroho. “Design and Development of Low-Cost Self-Navigating Unmanned Surface Vehicle”. In: 2020 IEEE 8th Conference on Systems, Process and Control (ICSPC). IEEE. 2020, 208–213. DOI: 10.1109/ICSPC50992.2020.9305774.
  32. [32] A. Mancini, E. Frontoni, and P. Zingaretti. “Development of a low-cost Unmanned Surface Vehicle for digital survey”. In: 2015 European Conference on Mobile Robots (ECMR). IEEE. 2015, 1–6. DOI: 10.1109/ECMR.2015.7324189.



60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.