Yuwei Liu This email address is being protected from spambots. You need JavaScript enabled to view it.1, Yuanzhi Sun1, Yang Wang1, Ruiyan Mao2, and ZixiWang1

1School of Mechanical Electronic Information Engineering, China University of Mining &Technology-Beijing, 100083 Beijing, China
2Guizhou Transportation Planning Survey & Design Academe Co. Ltd, 550081, Guiyang, China


Received: June 29, 2021
Accepted: November 6, 2020
Publication Date: January 18, 2022

 Copyright The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cited.

Download Citation: ||https://doi.org/10.6180/jase.202210_25(5).0017  


Thermal insulation coating at the top surfaces of the piston can reduce the thermal loads and improve its service life. The AlCrN coating was used for the heat insulation of a highly strengthened diesel engine aluminum alloy piston and the finite element model of piston was established. The influences of the coating on the piston temperature field and thermal stress field were analyzed and compared. Results show that the AlCrN coating effectively decreases the working temperature of the piston head and the first ring groove, and those temperatures decrease with the increase of the coating thickness. When the coating thickness is 60 m, the maximum temperature of the substrate of the piston and the average temperature of the first ring groove decrease 18.1% and 14.5%, respectively. The thermal stress of the upper portion of the back surface, pin hole edge and the first ring decreased respectively 22.8%, 12.6% and 13.8%.

Keywords: Highly strengthened piston; Thermal insulation coating; Finite element method; Thermal analysis


  1. [1] F. Silva, (2006) “Fatigue on engine pistons–A compendium of case studies" Engineering failure analysis 13(3): 480–492. DOI: 10.1016/j.engfailanal.2004.12.023.
  2. [2] Q. Zhao-Ju and Z. Wei-Zheng, (2014) “Analysis of Ablation Properties of Aluminum Alloy Used in Diesel Engine Piston" Chinese Internal Combustion Engine Engineering 35(5): 107–112.
  3. [3] A. S. Khusainov and A. Glushchenko, (2016) “Theoretical Prerequisites for Lowering Piston Temperature in Internal Combustion Engines" Procedia Engineering 150: 1363–1367. DOI: 10.1016/j.proeng.2016.07.330.
  4. [4] X. ZHANG, G. PENG, G. DU, G. JIANG, X. SUN, B. DENG, H. XIE, Z. WU, and T. XIAO, (2014) “Investigation on the microstructure and pore characteristics of carbon deposit on the piston top land of marine diesel engine using synchrotron X-ray microtomography" SCIENTIA SINICA Technologica 44(9): 953–960.
  5. [5] M. Awais, (2020) “Deposition of anti-stick coatings to prevent hydrocarbon buildup on truck engines" Scientia Iranica 27(5): 2489–2497. DOI: 10.24200/SCI.2020.53021.3014.
  6. [6] B. Beake, L. Ning, C. Gey, S. Veldhuis, A. Kornberg, A. Weaver, M. Khanna, and G. Fox-Rabinovich, (2015) “Wear performance of different PVD coatings during hard wet end milling of H13 tool steel" Surface and Coatings Technology 279: 118–125. DOI: 10.1016/j.surfcoat.2015.08.038.
  7. [7] J. Nohava, P. Dessarzin, P. Karvankova, and M. Morstein, (2015) “Characterization of tribological behavior and wear mechanisms of novel oxynitride PVD coatings designed for applications at high temperatures" Tribology International 81: 231–239. DOI: 10.1016/j.triboint.2014.08.016.
  8. [8] W. Y. Liew, J. L. L. Jie, L. Y. Yan, J. Dayou, C. Sipaut, and M. F. B. Madlan, (2013) “Frictional and wear behaviour of AlCrN, TiN, TiAlN single-layer coatings, and TiAlN/AlCrN, AlN/TiN nano-multilayer coatings in dry sliding" Procedia Engineering 68: 512–517. DOI: 10.1016/j.proeng.2013.12.214.
  9. [9] S.Wan, J. Pu, D. Li, B. Zhang, A. K. Tieu, et al., (2017) “Tribological performance of CrN and CrN/GLC coated components for automotive engine applications" Journal of Alloys and Compounds 695: 433–442. DOI: 10.1016/j.jallcom.2016.11.118.
  10. [10] B. Tlili, C. Nouveau, M. J. Walock, M. Nasri, and T. Ghrib, (2012) “Effect of layer thickness on thermal properties of multilayer thin films produced by PVD" Vacuum 86(8): 1048–1056. DOI: 10.1016/j.vacuum.2011.09.008.
  11. [11] B. Tlili, N. Mustapha, C. Nouveau, Y. Benlatreche, G. Guillemot, and M. Lambertin, (2010) “Correlation between thermal properties and aluminum fractions in CrAlN layers deposited by PVD technique" Vacuum 84(9): 1067–1074. DOI: 10.1016/j.vacuum.2010.01.011.
  12. [12] M. Antonov, H. Afshari, J. Baronins, E. Adoberg, T. Raadik, and I. Hussainova, (2018) “The effect of temperature and sliding speed on friction and wear of Si3N4, Al2O3, and ZrO2 balls tested against AlCrN PVD coating" Tribology International 118: 500–514. DOI: 10.1016/j.triboint.2017.05.035.
  13. [13] M. Samani, G. C. Chen, X. Z. Ding, and X. T. Zeng. “Thermal conductivity of CrAlN and TiAlN coatings deposited by lateral rotating cathode arc”. In: Key Engineering Materials. 447. Trans Tech Publ. 2010, 705–709. DOI: 10.4028/www.scientific.net/KEM.447-448.705.
  14. [14] Y.-x. TIAN, X.-c. ZHANG, J.-y. ZHANG, H.-j. REN, and Z.-m. Wang, (2004) “Three-Dimensional FEA for the Thermal Field of Pistons [J]" Chinese Internal Combustion Engine Engineering 1:
  15. [15] M. Costa, U. Sorge, and L. Allocca, (2011) “Numerical study of the mixture formation process in a fourstrok GDI engine for two-wheel applications" Simulation Modelling Practice and Theory 19(4): 1212–1226. DOI: 10.1016/j.simpat.2010.07.006.
  16. [16] C. Rakopoulos, D. Rakopoulos, G. Mavropoulos, and E. Giakoumis, (2004) “Experimental and theoretical study of the short term response temperature transients in the cylinder walls of a diesel engine at various operating conditions" Applied Thermal Engineering 24(5-6): 679–702.
  17. [17] I. Reyes-Ramırez, S. D. Martınez-Boggio, P. L. Curto- Risso, A. Medina, A. Calvo Hernández, and L. Guzmán-Vargas, (2018) “Symbolic analysis of the cycleto-cycle variability of a gasoline–hydrogen fueled spark engine model" Energies 11(4): 968. DOI: 10.3390/en11040968.
  18. [18] H. S. Pali and N. Kumar, (2016) “Combustion, performance and emissions of Shorea robusta methyl ester blends in a diesel engine" Biofuels 7(5): 447–456. DOI: 10.1080/17597269.2016.1153363.
  19. [19] P. Benjumea, J. R. Agudelo, and A. F. Agudelo, (2011) “Effect of the degree of unsaturation of biodiesel fuels on engine performance, combustion characteristics, and emissions" Energy & Fuels 25(1): 77–85. DOI: 10.1021/ef101096x.
  20. [20] G. Gonca, B. Sahin, A. Parlak, Y. Ust, V. Ayhan, I. Cesur, and B. Boru, (2015) “Theoretical and experimental investigation of the Miller cycle diesel engine in terms of performance and emission parameters" Applied Energy 138: 11–20. DOI: 10.1016/j.apenergy.2014.10.043.
  21. [21] C. Rakopoulos, G. Mavropoulos, and D. Hountalas, (2000) “Measurements and analysis of load and speed effects on the instantaneous wall heat fluxes in a direct injection air-cooled diesel engine" International Journal of Energy Research 24(7): 587–604. DOI: 10.1002/ 1099-114X(20000610)24:7<587::AID-ER604>3.0.CO;2-F.
  22. [22] Y. Wang, Y. Li, J. Yang, C. Sun, K. Liu, and R. Feng, (2017) “Effects of anodic oxidation for combustion chamber on heat transfer of the piston in an aero-engine" Experimental Heat Transfer 30(1): 46–65. DOI: 10.1080/08916152.2015.1135203.
  23. [23] O. I. Abdullah and J. Schlattmann, (2016) “Temperature analysis of a pin-on-disc tribology test using experimental and numerical approaches" Friction 4(2): 135–143. DOI: 10.1007/s40544-016-0110-1.
  24. [24] X. NIU, J. LEI, X. DENG, J. WEN, and Z. WEN, (2018) “Effects-of-Thermal-Barrier-Coatings-on-Thermal-Loads at-Piston-Top-Surfaces" China Mechanical Engineering 29(12): 1499. DOI: 10.3969/j.issn.1004-132X.2018.12.017.
  25. [25] A. Vrd, B. Ni, B. Ab, B. Sg, and B. Na, (2020) “Failure Analysis of Diesel Engine Piston in Transport Utility Vehicles" Engineering Failure Analysis: DOI: 10.1016/j.engfailanal.2020.105008.
  26. [26] S. Caputo, F. Millo, G. Boccardo, A. Piano, G. Cifali, and F. C. Pesce, (2019) “Numerical and experimental investigation of a piston thermal barrier coating for an automotive diesel engine application" Applied Thermal Engineering 162: 114233. DOI: 10.1016/j.applthermaleng.2019.114233.
  27. [27] G. Venkadesan and J. Muthusamy, (2019) “Experimental investigation of Al2O3/8YSZ and CeO2/8YSZ plasma sprayed thermal barrier coating on diesel engine" Ceramics International 45(3): 3166–3176. DOI: 10.1016/j.ceramint.2018.10.218.