Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

2.10

CiteScore

Sugiman Sugiman This email address is being protected from spambots. You need JavaScript enabled to view it.1, Paryanto Dwi Setyawan1, Buan Anshari2 

1 Department of Mechanical Engineering, Faculty of Engineering, University of Mataram, Mataram 83125, Indonesia
2 Department of Civil Engineering, Faculty of Engineering, University of Mataram, Mataram 83125, Indonesia


 

Received: September 27, 2019
Accepted: November 6, 2019
Download Citation: ||https://doi.org/10.6180/jase.202003_23(1).0002  


ABSTRACT


The paper presents the water absorption, swelling strain and the impact strength of alkali-treated bamboo fiber/polystyrene-modified unsaturated polyester (MUP) composites. The bamboo fibers were treated using alkali (sodium hydroxide) solution at the concentrations of 4, 8 and 12wt.% with the treatment times of 0.5, 1 and 2 hours under room (28oC) and elevated temperatures (50oC). The impact strength was investigated under dry and wet conditions. Under room temperature treatment, the equilibrium water uptake tended to decrease with the increase of alkali concentration; however, the diffusion rate did not indicate a clear trend. Meanwhile, the swelling strain tended to increase with the increase of alkali concentration. Under elevated temperature treatment, the water absorption of bamboo fiber/MUP composites further reduced, compared to that of under room temperature treatment at the same concentration. In dry condition, under both temperature treatments, the impact strength of the treated bamboo fiber/MUP composites was lower than that of the untreated bamboo fiber/MUP composites; however, the treatment under elevated temperature improved the impact strength, compared to that of under room temperature treatment. In wet condition, under both temperature treatments, the impact strength of the treated bamboo fiber/MUP composites improved and again the treatment under elevated temperature had the better improvement than the treatment under room temperature.


Keywords: Bamboo fiber, Alkali treatment, Elevated temperature, Water absorption, Impact strength



REFERENCES


  1. [1]     Jain, S., and R. Kumar. (1994) Processing of bamboo fiber reinforced plastic composites. Mater. Manuf. Processes 9(5), 813-828. doi: 10.1080/10426919408934955
  2. [2]     Das, M., and D. Chakraborty. (2006) Influence of alkali treatment on the fine structure and morphology of bamboo fibers. J. Appl. Polym. Sci. 102, 5050–5056. doi:10.1002/app.25105
  3. [3]     Das, M., and D. Chakraborty. (2009) The Effect of alkalization and fiber loading on the mechanical properties of bamboo fiber composites, Part 1: – Polyester resin matrix. J.
  4. Appl. Polym. Sci. 112, 489–495. doi: 10.1002/app.29342
  5. [4]     Junior, A. E. C., A. C. H. Barreto, D. S. Rosa, F. J. N. Maia, D. Lomonaco, and S. E. Mazzetto. (2015) Thermal and mechanical properties of biocomposites based on a cashew nut shell liquid matrix reinforced with bamboo fibers.  J.  Compos. Mater. 49(18), 2203–2215. doi: 10.1177/0021998314545182
  6. [5]     Wong, K. J., B. F. Yousif, and K. O. Low. (2010) Effects of alkali treatment on the interfacial adhesion of bamboo fibres. J. Mater. Des. Appl. 224(3), 139-148. doi:10.1243/14644207JMDA304
  7. [6]     Manalo, A. C., E. Wani, N. A. Zukarnain, W. Karunasena, and K. T. Lau. (2015) Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre-polyester composites. Composites: Part B 80, 73-83. doi: 10.1016/j.compositesb.2015.05.033
  8. [7]     Cai, M., H. Takagi, A. N. Nakagaito, Y. Li, and G. I. N. Waterhouse. (2016) Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites: Part A 90, 589–597. doi: 10.1016/j.compositesa.2016.08.025
  9. [8]     Fang, H., Q. Wu, Y. Hu, Y. Wang, and X. Yan. (2013) Effects of thermal treatment on durability of short bamboo-fibers and its reinforced composites. Fibers and Polymers 14(3), 436-440. doi: 10.1007/s12221-013-0436-5
  10. [9]     Meng, F. D., Y. L. Yu, Y. M. Zhang, W. J. Yu, and J. M. Gao. (2006) Surface chemical composition analysis of heat-treated bamboo. Appl. Surf. Sci. 371, 383–390. doi: 10.1016/j.apsusc.2016.03.015
  11. [10]   Ariawan, D., M. S. Salim, R. Mat Taib, M. Z. Ahmad Thirmizir, and Z. A. Mohd Ishak. (2017) Interfacial characterisation and mechanical properties of heat treated non-woven kenaf fibre and its reinforced composites. Composite Interfaces 25(2), 187-203. doi: 10.1080/09276440.2017.1354562
  12. [11]   Kim, H., K. Okubo, T. Fujii, and K. Takemura. (2013) Influence of fiber extraction and surface modification on mechanical properties of green composites with bamboo fiber.  J. Adhes. Sci. Technol. 27(12), 1348-1358. doi:10.1080/01694243.2012.697363
  13. [12]   Lu, T., M. Jiang, Z. Jiang, D. Hui, Z. Wang, and Z. Zhou. (2013) Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Composites: Part B 51, 28–34. doi: 10.1016/j.compositesb.2013.02.031
  14. [13]   Kumar, V., and R. Kumar. (2012) Dielectric and mechanical properties of alkali- and silane-treated bamboo-epoxy nanocomposites. J. Compos. Mater. 46(24), 3089–3101. doi: 10.1177/0021998311435831
  15. [14]   Kang, J. T., S. H. Park, and S. H. Kim. (2014) Improvement in the adhesion of bamboo fiber reinforced polylactide composites. J. Compos. Mater. 48(21), 2567–2577. doi: 10.1177/0021998313501013
  16. [15]   Adams, R. D., J. W. Cowap, G. Farquharson, G. M. Margary, and D. Vaughn. (2009) The relative merits of the Boeing wedge test and double cantilever beam test for assessing the durability of adhesively bonded joints, with particular reference to the use of fracture mechanics, Int. J. Adhes. Adhes. 29, 609-620. doi:10.1016/j.ijadhadh.2009.02.010
  17. [16]   Farsani, R. E., S. M. R. Khalili, and V. Daghigh. (2013) Charpy impact response of basalt fiber reinforced epoxy and basalt fiber metal laminate composites: Experimental study. Int. J. Damage Mech. 0(0), 1-16.
  18. [17]   Setyawan, P. D., and Sugiman. (2012) Pengaruh Penambahan Styrofoam dan Partikel Karet Terhadap Sifat Mekanik Resin Polyester Tak Jenuh. in Proceeding Seminar Nasional Tahunan Teknik Mesin XI (SNTTM XI) & Thermofluid IV Universitas Gadjah Mada (UGM), Yogyakarta.
  19. [18] Sugiman, S., P. D. Setyawan, and B. Anshari. (2019). Effects of alkali treatment of bamboo fibre under various conditions on the tensile and flexural properties of bamboo fibre/polystyrene-modified unsaturated polyester composites. Journal of Engineering Science and Technology 14(1), 026 – 046.
  20. [19]   ASTM D256. (2002). Standard test methods for determining the izod pendulum impact resistance of plastics. ASTM International, Pennsylvania.
  21. [20]   Crank, J. (1975). The mathematic of diffusion. 2nd ed. Oxford University Press, London.
  22. [21]   Liu, D., J. Song, D. P. Anderson, P. R. Chang, and Y. Hua. (2012) Bamboo fiber and its reinforced composites: Structure and properties. Cellulose 19, 1449–1480. doi:10.1007/s10570-012-9741-1
  23. [22]   Kakroodi, A. R., Y. Kazemi, and D. Rodrigue. (2013) Mechanical, rheological, morphological and water absorption properties of maleated polyethylene/hemp composites: Effect of ground tire rubber addition. Composites: Part B 51, 337-344. doi:10.1016/j.compositesb.2013.03.032
  24. [23]   Azwa, Z. N., B. F. Yousif, A. C. Manalo, and W. Karunasena. (2013) A review on the degradability of polymeric composites based on natural fibres. Mater. Design 47, 424–442. doi: 10.1016/j.matdes.2012.11.025
  25. [24]   Li, L., Y. Yu, Q. Wu, G. Zhan, and S. Li. (2009) Effect of chemical structure on the water sorption of amine-cured epoxy resins. Corros. Sci. 51(12), 3000-3006. doi:10.1016/j.corsci.2009.08.029
  26. [25]   Sreekumar, P. A., S. P. Thomas, J. M. Saiter, K. Joseph, G. Unnikrishnan, and S. Thomas. (2009) Effect of fiber surface modification on the mechanical and water absorption charcteristics of sisal/polyester composites fabricated by resin transfer molding. Composites: Part A 40, 1777-1784. doi: 10.1016/j.compositesa.2009.08.013
  27. [26]   Bodur, M.S., K. Englund, and M. Bakkal. (2017) Water absorption behaviour and kinetics of glass fiber/waste cotton fabric hybrid composites. J. Appl. Polym. Sci. 1-9. DOI: 10.1002/APP.45506. doi: 10.1002/app.45506
  28. [27]   Adamson, M. J. (1980) Thermal-expansion and swelling of cured epoxy-resin used in graphite-epoxy composite materials. J. Mater. Sci. 15, 1736-1745. doi:10.1007/BF00550593
  29. [28]   Das, S. (2017) Mechanical and water swelling properties of waste paper reinforced unsaturated polyester composites. Construct. Build. Mater. 138 (2017) 469–478. doi: 10.1016/j.conbuildmat.2017.02.041
  30. [29]   Liu, Y., and H. Hu. (2008) X-ray Diffraction Study of Bamboo Fibers Treated with NaOH. Fibers Polym. 9(6), 735-739. doi: 10.1007/s12221-008-0115-0
  31. [30]   Mouzakis, D. E., and J. Karger-Kocsis. (1998) Effects of gasoline absorption on the tensile impact response of HDPE/selar (TM) laminar microlayer composites. J. Appl. Polym. Sci. 68(4), 561-569.
  32. [31]   Alfrey, T., E. F. Gurnee, and W. G. Lloyd. (1966) Diffusion of glassy polymers. J. Polym. Sci. 12, 249-261.
  33. [32]   Ahmad, Z., M. P. Ansell, and D. Smedley. (2010) Effect of nano- and micro-particle additions on moisture absorption in thixotropic room temperature cure epoxy-based adhesives for bonded-in timber connections. Int. J. Adhes. Adhes. 30, 448-455. doi: 10.1016/j.ijadhadh.2010.04.001
  34. [33]   Öztürk, S. (2005) The effect of fibre content on the mechanical properties of hemp and basalt fibre reinforced phenol formaldehyde composites. J. Mater. Sci. 40(17), 4585–4592. doi: 10.1007/s10853-005-1103-z
  35. [34]   Cantwell, W. J., and J. Morton. (1991) The impact resistance of composite materials-a review. Composites 22(5), 347-362. doi:10.1016/0010-4361(91)90549-V
  36. [35]   Prasad, E. G. L., B. S. K. Gowda, and R. Velmurugan. (2017) Comparative study of impact strength characteristics of treated and untreated sisal polyester composites. Procedia Engineering 173, 778 – 785. doi: 10.1016/j.proeng.2016.12.096
  37. [36]   Chen, H., Y. Yu, T. Zhong, Wu Y, Y. Li, Z. Wu, and B. Fei. (2017) Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers. Cellulose 24, 333-347. doi: 10.1007/s10570-016-1116-6
  38. [37]   Maurin, R., Y. Perrot, A. Bourmaud, P. Davies, and C. Baley. (2009) Seawater ageing of low styrene emission resins for marine composites: mechanical behaviour and nano-indentation studies. Composites: Part A. 40, 1024–1032. doi: 10.1016/j.compositesa.2008.01.013
  39. [38]   Mouzakis, D. E., H. Zoga, and C. Galiotis. (2008) Accelerated environmental ageing study of polyester/glass fiber reinforced composites (GFRPCs). Composites: Part B 39, 467–475. doi: 10.1016/j.compositesb.2006.10.004
  40. [39]   Sugiman, S., I. K. P. Putra, and P. D. Setyawan. (2016) Effects of the media and ageing condition on the tensile properties and fracture toughness of epoxy resin. Polym. Degrad. and Stab. 134, 311-321. doi: 10.1016/j.polymdegradstab.2016.11.006
  41. [40]   Sugiman, S., M. H. Gozali, and P. D. Setyawan. (2019) Hygrothermal effects of glass fiber reinforced unsaturated polyester resin composites aged in steady and fluctuating conditions. Adv. Compos. Mater. 28(1), 87-102. doi: 10.1080/09243046.2017.1405597
  42. [41]   Sugiman, S., P. D. Setyawan, and B. Anshari. (2019) Effect of fiber length on the mechanical properties and water absorption of bamboo fiber/polystyrene-modified unsaturated polyester composites. IOP Conf. Ser.: Mater. Sci. Eng. 532 012008. doi:10.1088/1757-899X/532/1/012008.


Latest Articles