Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Chao-Chin Chang1,2, Tsung-Ying Tsai1 and Liao-Ping Cheng This email address is being protected from spambots. You need JavaScript enabled to view it.1,2

1Department of Chemical and Materials Engineering, Tamkang University, Tamsui, Taiwan 25137, R.O.C.
2Energy and Opto-Electronic Materials Research Center, Tamkang University, Tamsui, Taiwan 25137, R.O.C.


 

Received: May 31, 2018
Accepted: October 2, 2018
Publication Date: March 1, 2019

Download Citation: ||https://doi.org/10.6180/jase.201903_22(1).0015  

ABSTRACT


Superhydrophilic UV-curable nanosilica particles were synthesized through reaction of the surfactant, Tween-20, and the C=C containing silane, MSMA, with silica nanoparticles synthesized from hydrolysis and condensation of tetraethoxysilane in an acid catalyzed sol-gel process. The formed organic/inorganic hybrid nanoparticles were used to prepare antifog (AF) coatings with a special hydrophilic/hydrophobic bi-layer structure on polycarbonate (PC) substrates. The coatings were transparent, adhered strongly to the substrate, and demonstrated superb AF capability on steam tests. The hardness of the coatings reached 1H in the optimal case, considerably higher than that of the PC substrate (2B). After immersed in water for 24 h at 25 C, this coating still demonstrated good AF capability; however, it took longer time (2 min) to retain transparency on the steam test.


Keywords: Anti-fogging, Silica, Nanocomposite, Coatings


REFERENCES


  1. [1] Aegerter, M. A., R. Almeida, A. Soutar, K. Tadanaga, and H. Yang (2008) Coatings madeby sol-gel and chemical nanotechnology, Journal of Sol-Gel Science and Technology 47(2), 203236. doi: 10.1007/s10971-0081761-9
  2. [2] Feng, X., and L. Jiang (2006) Design and creation of superwetting/antiwetting surfaces, Advanced Materials 18(23), 30363078. doi: 10.1002/adma.200501961
  3. [3] Drelich, J., E. Chibowski, D. D. Meng, and K. Terpilowskic (2011) Hydrophilic and superhydrophilic surfaces and materials, Soft Matter 7(21), 98049828. doi: 10.1039/C1SM05849E
  4. [4] Howarter, J. A., and J. P. Youngblood (2007) Selfcleaning and anti-fog surfaces via stimuli-responsive polymer brushes, Advanced Materials 19(22), 3838 3843. doi: 10.1002/adma.200700156
  5. [5] Howarter, J. A., and J. P. Youngblood (2008) Selfcleaning and next generation anti-fog surfaces and coatings, Macromolecular Rapid Communications 29(6), 455466. doi: 10.1002/marc.200700733
  6. [6] Nuraje, N., R. Asmatulu, R. E. Cohen, and M. F. Rubner (2011) Durable antifog films from layer-bylayer molecularly blended hydrophilic polysaccharides, Langmuir 27(2), 782791. doi: 10.1021/la103754a
  7. [7] Dong, H., P. Ye, M. Zhong, J. Pietrasil, R. Drumright, and K. Matyjaszewski (2010) Superhydrophilic surfaces via polymer-SiO2 nanocomposites, Langmuir 26(19), 1556715573. doi: 10.1021/la102145s
  8. [8] Leonard, R. L., A. Y. Terekhov, C. Thompson, R. A. Erck, and J. A. Johnson (2012) Antifog coating for bronchoscope lens, Surface Engineering 28(6), 468 472. doi: 10.1179/1743294412Y.0000000007
  9. [9] Wang, S., K. Liu, X. Yao, and L. Jiang (2015) Bioinspired surfaces with superwettability: New insight on theory, design, and applications, Chemical Review 115(16), 82308293. doi: 10.1021/cr400083y
  10. [10] Kim, P., T. S. Wong, J. Alvarenga, M. J. Kreder, W. E. Adorno-Martinez, and J. Aizenberg (2012) Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost Performance, ACS Nano 6(8), 6569 6577. doi: 10.1021/nn302310q
  11. [11] Tahk, D., T. Kim,H. Yoon, M. Choi, K. Shin, and K. Y. Suh (2010) Fabrication of antireflection and antifogging polymer sheet by partial photopolymerization and dry etching, Langmuir 26(4), 22402243. doi: 10. 1021/la904768e
  12. [12] Li, X., and J. He (2012) In situ assembly of raspberry and mulberry-like silica nanospheres toward antireflective and antifogging coatings, ACS Applied Materials & Interfaces 4(4), 22042211. doi: 10.1021/ am3002082
  13. [13] Lee, H., M. L. Alcaraz, M. F. Rubner, and R. E. Cohen (2013) Zwitter-wettability and antifogging coatings with frost-resisting capabilities, ACS Nano 7(3), 2172 2185. doi: 10.1021/nn3057966
  14. [14] Wang, Y., Y. Li, S. Li, and J. Sun (2015) Antifogging and frost-resisting polyelectrolyte coatings capable of healing scratches and restoring transparency, Chemistry of Materials 27(23), 80588065. doi: 10.1021/acs. chemmater.5b03705
  15. [15] Zhao, J., A. Meyer, L. Ma, and W. Ming (2013) Acrylic coatings with surprising antifogging and frost resisting properties, Chemical Communications 49(100), 1176411764. doi: 10.1039/c3cc46561f
  16. [16] Zhang, X., and J. He (2015) Hydrogen-bonding-supported self-healing antifogging thin films, Scientific Reports 5, 9227. doi: 10.1038/srep09227
  17. [17] Yuan, Y., R. Liu, C. Wang, J. Luo, and X. Liu (2014) Synthesis of UV-curable acrylate polymer containing sulfonic groups for anti-fog coatings, Progress in Organic Coatings 77(4), 785789. doi: 10.1016/j. porgcoat.2014.01.001
  18. [18] Shibraen, M. H. M. A., H. Yagoub, X. Zhang, J. Xu, and S. Yang (2016) Anti-fogging and anti-frosting behaviors of layer-by-layer assembled cellulose derivative thin film, Applied Surface Science 370, 1 5. doi: 10.1016/j.apsusc.2016.02.060
  19. [19] Maechler, L., C. Sarra-Bournet, P. Chevallier, N. Gherardi, and G. Laroche (2011) Anti-fog layer deposition onto polymer materials: a multi-step approach, Plasma Chemistry and Plasma Processing 31(1), 175 187. doi: 10.1007/s11090-010-9261-4
  20. [20] Plasman, V., T. Caulier, and N. Boulos (2005) Polyglycerol esters demonstrate superior antifogging properties for films, Plastics Additives & Compounding 7(2), 3033. doi: 10.1016/S1464-391X(05)00359-4
  21. [21] Chang, C. C., F. H. Huang, H. H. Chang, T. M. Don, C. C. Chen, and L. P. Cheng (2012) Preparation of water-resistant antifog hard coatings on plastic substrate, Langmuir 28(49), 1719317201. doi: 10.1021/la304176k
  22. [22] Oguri, K., N. Iwataka, A. Tonegawa, Y. Hirose, K. Takayama, and Y. Nishi (2001) Misting-free diamond surface created by sheet electron beam irradiation, Journal of Materials Research 16(2), 553557. doi: 10.1557/JMR.2001.0079
  23. [23] Briscof, B. J., and K. P. Galvin (1991) The effect of surface fog on the transmittance of light, Solar Energy 46(4), 191197. doi:10.1016/0038-092X(91)90063-3
  24. [24] Zhao,H.,and D.Beysens(1995) From droplet growth to film growth on a heterogeneous surface - condensation associated with a wettability gradient, Langmuir 11(2), 627634. doi: 10.1021/la00002a045
  25. [25] Gao, X. F., X. Yan, X. Yao, L. Xu, K. Zhang, J. H. Zhang, B. Yang, and L. Jiang (2007) The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography, Advanced Materials 19, 22132217. doi: 10.1002/adma. 200601946
  26. [26] Cebeci,F.C.,Z.Z.Wu, L.Zhai,R.E.Cohen, and M.F. Rubner (2006) Nanoporosity-driven superhydrophilicity: a means to create multifunctional antifogging coatings, Langmuir 22(6), 28562862. doi: 10.1021/ la053182p
  27. [27] Machida, M., K. Norimoto, T. Watanabe, K. Hashimoto, and A. Fujishima(1999) The effect of SiO2 addition in super-hydrophilic property of TiO2 photocatalyst, Journal of Materials Science 34(11), 25692574. doi: 10. 1023/A:1004644514653
  28. [28] Chang, C. C., K. C. Wang, C. C. Chen, and L. P. Cheng (2014) Preparation and characterizationof silica/polymer antifogging coatings, Polymers and Polymer Composites 22(1), 3944.
  29. [29] Cui, Y., M. Wang, L. Chen, and G. Qian (2005) Synthesis and characterization of an alkoxysilane dye for nonlinear optical applications, Dyes and Pigments 65(1), 6166. doi: 10.1016/j.dyepig.2004.07.002
  30. [30] Verbrugghe, M., P. Sabatino, E. Cocquyt, P. Saveyn, D. Sinnaeve, P. Van der Meeren, and J. C. Martins (2010) Solubilization of flurbiprofen with non-ionic Tween20 surfactant micelles: a diffusion 1H NMR study, Colloids and Surfaces A: Physicochemical and Engineering Aspects 372(1), 2834. doi: 10.1016/j. colsurfa.2010.09.020
  31. [31] Yu, Y. Y., C.Y. Chen, and W. C.Chen (2003) Synthesis and characterization of organic-inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica, Polymer 44(3), 593601. doi: 10.1016/ S0032-3861(02)00824-8
  32. [32] Chen, C. C., D. J. Lin, T. M. Don, F. H. Huang, and L. P. Cheng (2008) Preparation of organic-inorganic nanocomposites for antireflection coatings, Journal of Non-crystalline Solid 35(32), 38283835. doi: 10. 1016/j.jnoncrysol.2008.04.010
  33. [33] Chang, C. C., T. Y. Oyang, Y. C. Chen, F. H. Hwang, and L. P. Cheng (2014) Preparation of hydrophobic nanosilica filled polyacrylate hard coatings on plastic substrates, Journal of Coatings Technology and Research 11(3), 381386. doi: 10.1007/s11998-0139540-0
  34. [34] Chang, C. C., Z. M. Lin, S. H. Huang, and L. P. Cheng (2015) Preparation of highly transparent 13F-modified nano-silica/polymer hydrophobic hard coatings on plastic substrates, Journal of Applied Science and Engineering 18(4), 387394. doi: 10.6180/jase.2015.18.4. 10
  35. [35] Chang, C. C., J. H. Lin, and L. P. Cheng (2016) Preparation of solvent-dispersible nano-silica powder by sol-gel method, Journal of Applied Science and Engineering 19(4), 401408. doi: 10.6180/jase.2016.19.4. 03


    



 

1.6
2022CiteScore
 
 
60th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.