Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Zhiqiang Zhou1, Yu Shen  1, Chengkuan Wan2,3, Wei Hu1, Tao Wang1 and Hao Tang3

1Electric Power Research Institute, State Grid Hubei Electric Power Co., Ltd, Wuhan 430077, P.R. China
2Chengdu Star-river Technology Industry Co., Ltd, Chengdu 610041, P.R. China
3School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China


 

Received: December 17, 2018
Accepted: May 14, 2019
Publication Date: September 1, 2019

Download Citation: ||https://doi.org/10.6180/jase.201909_22(3).0017  

ABSTRACT


This paper proposes an improved classified and time-divided low voltage ride through control method of cascade converter, aiming at solving operation problem of H-Bridge cascade converter during grid voltage dropping process. In addition, a DC voltage adaptive equalization control method is put forward to solve DC voltage imbalance problem of H-Bridge cascade converter in the dropping process. Finally, a 10 Mvar H-Bridge cascade converter device is designed and verified on the RTDS experimental platform. The experimental results show that the H-Bridge cascade converter under the improved control strategy can keep the device from off-grid operation in the grid voltage dropping process and provide the maximum reactive power support while maintaining DC voltage balance of the H-Bridge cascade converter power unit.


Keywords: H-Bridge Cascade Converter, Low Voltage Ride Through, RTDS Simulation, DC Bus Voltage Balance Control


REFERENCES


  1. [1] Peng, F. Z. (1997) Dynamic performance and control of a static var generator using cascade multilevel inverters, IEEE Transactions on Industry Applications 33(3), 748755. doi: 10.1109/28.585865
  2. [2] Liu, L. M., H. Li, Y. S. Xue, and W. X. Liu (2015) Decoupled active and reactive power control for largescale grid-connected photovoltaic systems using cascaded modular multilevel converters, IEEE Transactions on Power Electronics 30(6), 176187. doi: 10. 1109/TPEL.2014.2304966
  3. [3] NB/T 42043-2014 (2014) High Voltage Static Synchronous Compensator, Beijing: National Energy Administration. (In Chinese)
  4. [4] Smith, J. C. (2009) Wind power: present realities and future possibilities, IEEE Proc. 97(2), 195197. doi: 10.1109/JPROC.2008.2008746
  5. [5] Xiang, D. W., and R. Li, (2006) Control of a doubly fed induction generator in a wind turbine during grid fault ride-through, IEEE Transaction on Energy Conversion 21(3), 652662. doi: 10.1109/TEC.2006.875 783
  6. [6] Luis, M., E. A. Castro, and R. Claudio (2013) Fuerteesquivel TATCOM model for dynamic power system
    simulations, Transactions on Power System 28(3), 31453154.
  7. [7] Zhou, J. H., J. D. Liu, Y. A. Chen, and J. Li(2013) Low voltage ride-through control of high power inverter for gird-connection of photovoltaic generation, Power System Technology 37(7), 17991807. (In Chinese)
  8. [8] Jia, L. H., Y. Q. Zhu, X. Y. Sun, and Y. S. Wang (2015) Acontrol method of low voltage ride through for photovoltaic plant based on model current predictive control, Automation of Electric Power Systems 39(7), 68 74. (In Chinese)
  9. [9] Zhang, X., L. Y. Zhang, S. Y. Yang, Y. Yu, and R. X. Cao (2008) Low voltage ride-through technologies in wind turbine generation, Proceedings of the CSUPSA, 20(2), 18.
  10. [10] Wang, W., M. D. Sun, and X. D. Zhu (2007) Analysis on the low voltage ride through technology of DFIG, Automation of Electric Power Systems 31(23), 8489. (In Chinese)
  11. [11] Hossein, D. T., I. M. Ali, and K. Georgios (2016) Low-voltage ride-through capability of full-row connected cascaded H-bridge converters, 2016 IEEE Region 10 Conference. doi: 10.1109/TENCON.2016. 7848152
  12. [12] Nour, E., A. M. Osama, D. T. Hossein, I. M. Ali, K. Georgios, et al. (2017) Low-voltage ride-through capability of full-row connected cascaded H-bridge converters, 2017 IEEE Power & Energy Society General Meeting.
  13. [13] Wan, C. K., G. Yang, T. S. Zhang, W. Y. Wu, and C. Y. Lai (2012) DC bus voltage balancing control of threephase cascade power regulation system with star connection, Transactions of China Electrotechnical Society 12(27), 256263. (In Chinese)
  14. [14] Zhao, B., J. B. Guo, and F. Zhou (2012) DC voltage balance control strategy among phases for cascaded STATCOM, Proceedings of the CSEE 32(34), 3641. (In Chinese)
  15. [15] Yang, X. W., J. G. Jiang, and S. C. Liu (2009) A novel design approach of DC voltage controller or cascaded H-bridge converter-based STATCOM, Power Electronics and Motion Control Conference, IPEMC 09. Wuhan, China: IEEE, 23592364. doi: 10.1109/IPEMC.2009.5157798
  16. [16] Maharjan, L., S. Inoue, and H. Akagi (2008) A transformerless energy storage system based on a cascade multilevel PWM converter with star configuration, IEEE Trans. Ind. Appl. 44(5), 16211630. doi: 10. 1109/TIA.2008.2002180
  17. [17] Liu,Z.,B.Y.Liu,S.X. Duan, Y.Kang, Y.J.Shi, and Z. W. Chen (2010) DC capacitor voltage balancing control for cascade multilevelSTATCOM, Proceedings of the CSEE 29(30), 712. (In Chinese)
  18. [18] Summers, T. J., R. E. Betz, and G. Mirzaeva (2009) Phase leg voltage balancing of a cascaded H-bridge converter based STATCOM using zero sequence injection, 13th European Conference on Power Electron and Appl.
  19. [19] Wan, C. K., G. Yang, H. Geng, and T. S. Zhang (2011) Control methods of a cascade power regulation system for smart grid, IEEE PES Innovative Smart Grid Technologies (ISGT) Asia Conference. doi: 10.1109/ISGTAsia.2011.6167139