Yih-Hang Chen1, Ming-Tien Shen1 and Hsuan Chang This email address is being protected from spambots. You need JavaScript enabled to view it.1 

1Department of Chemical and Materials Engineering, Tamkang University, Tamsui, Taiwan 25137, R.O.C.


Received: January 7, 2018
Accepted: April 30, 2019
Publication Date: September 1, 2019

Download Citation: ||https://doi.org/10.6180/jase.201909_22(3).0013  


MEA (monoethanolamine) process is the most extended chemical absorption solvent for CO2 capture in post-combustion process. Improvements of the energy consumption of this process has continuously been the significant research focus. A rate-based dynamic model for the comprehensive CO2 absorption process using aqueous MEA solution is developed on Aspen Custom Modeler (ACM) and verified by the pilot plant dynamic data from the literature. A carbon dioxide absorption process with a typical control scheme for the treatment of the coal-fired power plant flue gas is simulated using this model. The dynamic responses to the disturbances of the flue gas flow rate, temperature, and carbon dioxide concentration as well as the set point change of the absorption efficiency are obtained. The response time is about 6 hours for disturbance change and about 9 hours for set point change. The model can be utilized to evaluate the performance of alternative control schemes and optimal dynamic operations.

Keywords: Post-combustion Carbon Capture, Amine Absorption, Rate-based Model, Dynamic Model


  1. [1] The Global Status of CCS: 2018. Available online: https://www.globalccsinstitute.com/resources/ global-status-report/ (accessed on 22 Dec. 2018).
  2. [2] Luis, P. (2016) Use of monoethanolamine (MEA) for CO2 capture in a global scenario: consequences and alternatives, Desalination 380, 9399. doi: 10.1016/j. desal.2015.08.004
  3. [3] Kohl, A. L., and R. B. Nielsen (1997) Gas Purification, 5th ed., Gulf Professional Publishing, Houston USA.
  4. [4] Aspen Technology (2018), Inc., Aspen Plus V10.
  5. [5] Walters, M. S., T. F. Edgar, and G. T. Rochelle (2016) Dynamic modeling and control of an intercooled absorber for post-combustion CO2 capture, Chemical Engineering and Processing 107, 110. doi: 10.1016/ j.cep.2016.05.012
  6. [6] Nittaya, T., P. L. Douglas, E. Croiset, L. A. RicardezSandoval(2014) Dynamicmodelling and controlof MEA absorption processes for CO2 capture from power plants, Fuel 116, 672691. doi: 10.1016/j.fuel.2013.08.031
  7. [7] Panahi, M., and S. Skogestad (2011) Economically efficient operation of CO2 capturing process part I: selfoptimizing procedure for selecting the best controlled variables, Chemical Engineering and Processing 50, 247253. doi: 10.1016/j.cep.2011.02.005
  8. [8] Ziaii, S., G. T. Rochelle, and T. F. Edgar (2009) Dynamic modeling to minimize energy use for CO2 capture in power plants by aqueous monoethanolamine, Industrial and Engineering Chemistry Research 48, 61056111. doi: 10.1021/ie801385q
  9. [9] Zhang, Q., R. Turton, and D. Bhattacharyya (2016) Development of model and model-predictive control of an MEA based postcombustion CO2 capture process, Industrial and Engineering Chemistry Research 55, 12921308. doi: 10.1021/acs.iecr.5b02243
  10. [10] Aspen Technology (2015), Inc., Jump Start: Aspen Custom Modeler, V8.
  11. [11] Walters, M. S., Y. J. Lin, D. J. Sachde, T. F. Edgar, and G. T. Rochelle (2016) Control relevant model of amine scrubbing for CO2 capture from power plants, Industrial and Engineering Chemistry Research 55, 1690 1700. doi: 10.1021/acs.iecr.5b04379
  12. [12] Freguia, S., and G. T. Rochelle (2003) Modeling of CO2 capture by aqueous monoethanolamine, AIChE Journal 49, 16761686. doi: 10.1002/aic.690490708
  13. [13] Luu, M. T., N. A. Manaf, and A. Abbas (2015) Dynamic modelling and control strategies for flexible operation of amine-based post-combustion CO2 capture systems, International Journal of Greenhouse Gas Control 39, 377389. doi: 10.1016/j.ijggc.2015.05.007
  14. [14] Harun, N., T. Nittaya, P. L. Douglas, E. Croiset, and L. A. Ricardez-Sandoval (2012) Dynamic simulation of MEA absorption process for CO2 capture from power plants, International Journal of Greenhouse Gas Control 10, 95309. doi: 10.1016/j.ijggc.2012.06.017
  15. [15] Danckwerts, P. V. (1970) Gas-Liquid Reactions, Mc Graw-Hill, New York USA. doi: 10.1149/1.2407312
  16. [16] Billet, R., and M. Schultes (1999) Prediction of mass transfer columns with dumped and arranged packings, updated summary of the calculation method of billet and schultes, Chemical Engineering Research and Design 77, 498504. doi: 10.1205/026387699526520
  17. [17] Bird, R. B., W. E. Stewart, and E. N. Lightfoot (2007) Transport Phenomena, Revised 2nd ed., John Wiley & Sons, New York, USA.
  18. [18] Stichlmair, J., J. L. Bravo, and J. R. Fair (1989) General modelfor prediction of pressure drop and capacity of countercurrent gas/liquid packed columns, Gas Separation and Purification 3, 1928. doi: 10.1016/ 0950-4214(89)80016-7
  19. [19] Flø, N. E., H. Knuutila, H. M. Kvamsdal, and M. Hillestad (2015) Dynamic model validation of the postcombustion CO2 absorption process, International Journal of Greenhouse Gas Control 41, 127141. doi: 10.1016/j.ijggc.2015.07.003
  20. [20] Luyben, W. L., and M. L. Luyben (1997) Essentials of Process Control, McGraw-Hill, New York, USA.
  21. [21] Rivera, D. E., M. Morari, and S. Skogestad (1986) Internal model control 4. PID controller design, Industrial Engineering and Chemical Process Design and Development25, 252265. doi:10.1021/i200032a041


42nd percentile
Powered by  Scopus

SCImago Journal & Country Rank

Enter your name and email below to receive latest published articles in Journal of Applied Science and Engineering.