Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Kandassamy K. This email address is being protected from spambots. You need JavaScript enabled to view it.1 and Prabu B.2

1Department of Mechanical Engineering, Annamalai University, Chidambaram, Tamilnadu, 608002, India
2Department of Mechanical Engineering, Pondicherry Engineering College, Puducherry, 605014, India


 

Received: July 23, 2018
Accepted: October 28, 2018
Publication Date: March 1, 2019

Download Citation: ||https://doi.org/10.6180/jase.201903_22(1).0012  

ABSTRACT


Cooling of electronic circuits is a necessity to ensure their reliability and optimum working conditions. In this work different types of pin fin based bio-inspired flow fields are analyzed. The flow fields are of differently shaped pin fin arrays, with leaf-type branching secondary channels, having a porosity range of 0.520.78. The number of inlet and outlet pairs for the models analyzed varies from one to four, to cater to the increased heat flux inputs. The simulation of the heat sink models is done using COMSOL. The coupling between heat transfer and laminar fluid flow is done using conjugate heat transfer analysis. The heat sinks are subjected to a constant heat flux input and tested for the laminar Re range of 10002300. The square pin fin model is validated at a porosity of 0.52 and aspect ratio-8.6, for test conditions specified in reference work. Validation of simulation results is done by comparing the mixing cup temperature with that obtained by applying the heat balance equation. The results prove that, the thermal and hydraulic resistance of bio-inspired pin fin models studied in this investigation is lower than that of traditional pin fin array models, leading to a higher Nu for similar pressure drops. The four-inlet heat sink models show a thermal resistance of 0.130.15 C/W at an inlet Re of 2300 with a calculated pumping power of 0.081-0.132 W for the flow field. The reduced porosity square pin fin model has a thermal resistance of 0.0673 C/W at pumping power of 3.44 W.


Keywords: Pin Fin, Heat Sink, Thermal Resistance, Hydraulic Resistance, Reynolds Number


REFERENCES


  1. [1] Kuppusamy, N. R, R. Saidur, N. N. N. Ghazali, and H. A. Mohammed (2014) Numerical study of thermal enhancement in micro channel heat sink with secondary flow, Int J. Heat Mass Transfer 78, 216223. doi: 10. 1016/j.ijheatmasstransfer.2014.06.072
  2. [2] Mei, D., X. Lou, M. Qian, Z. Yao, L. Liang, and Z. Chen (2014) Effect of tip clearance on heat transfer and pressure drop performance in the microreactor with micro-pin-fin arrays at low reynolds number, Int. J. Heat and Mass Transfer 70, 709718. doi: 10.1016/ j.ijheatmasstransfer.2013.11.060
  3. [3] Lee, Y. J., P. K. Sing, and P. S. Lee (2015) Fluid flow and heat transfer investigations on enhanced microchannel heat sink using oblique fins with parametric study, Int. J. Heat and Mass Transfer 81, 325336. doi: 10.1016/j.ijheatmasstransfer.2014.10.018
  4. [4] Abdoli, A., G. Jimenez, and G. S. Dulikravich (2015) Thermofluid analysis of micro pin-fin array cooling configurations for high heat fluxes with a hot spot, Int. J. of Thermal Sciences 90, 290297. doi: 10.1016/j. ijthermalsci.2014.12.021
  5. [5] Wang, Y., A. Nayebzadeh, X. Yu, J. Shin, and Y. Peles (2017) Local heat transfer in a microchannelwith a pin fin-experimental issues and methods to mitigate, Heat and Mass Transfer 106, 11911204. doi: 10.1016/j. ijheatmasstransfer.2016.10.100
  6. [6] Yu, X., C. Woodcock, J. Plawsky, and Y. Peles (2016) An investigation of convective heat transfer in a microchannel with piranha pin fin, Int. J of Heat Mass Transfer 103, 11251132. doi: 10.1016/j. ijheatmasstransfer.2016.07.069
  7. [7] Yadav, V., K. Baghel, R. Kumar, and S. T. Kadam (2016) Numerical investigation of heat transfer in extended surface microchannels, Int J. Heat Mass Transfer 93, 612622. doi: 10.1016/j.ijheatmasstransfer. 2015.10.023
  8. [8] Duangthongsuk, W., and S. Wongwises (2015) An experimental study on the thermal and hydraulic performances of nanofluid flow in a miniature circular pin heat sink, Experimental Thermal and Fluid Science 66, 2835. doi:10.1016/j.expthermflusci.2015.02.008
  9. [9] Gunda, N. S. K., J. Joseph, A. Tamayol, M. Akbari, and S. K. Mitra (2013) Measurement of pressure drop and flow resistance in microchannels with integrated micropillars, Microfluid Nanofluid 14, 711721. doi: 10.1007/s10404-012-1089-1
  10. [10] Yang, D., Y. Wang, G. Ding, Z. Jin, J. Zhao, and G. Wang (2017) Numerical and experimental analysis of cooling performance of single-phase array microchannel heat sinks with different pin-fin configurations, Applied Thermal Engineering 112, 15471556. doi: 10.1016/j.applthermaleng.2016.08.211
  11. [11] Law, M., O. B. Kanargi, and P. Lee (2016) Effects of varying oblique angles on flow boiling heat transfer and pressure characteristics in oblique-finned microchannels, Int. J. of Heat and Mass Transfer 100, 646660. doi: 10.1016/j.ijheatmasstransfer.2016.04.077
  12. [12] Hua, J., G. Li, X. Zhao, Q. Li, and J. Hu (2016) Study on the flow resistance performance of fluid cross various shapes of microscale pin fin, Applied Thermal Engineering 107, 768775. doi: 10.1016/j. applthermaleng.2016.07.048
  13. [13] Zhao, J., S. Huang, L. Gong, and Z. Huang (2016) Numerical study and optimizing on micro square pin-fin heat sink for electronic cooling, Applied Thermal Engineering 93, 13471359. doi: 10.1016/j. applthermaleng.2015.08.105
  14. [14] Razavi, S. E., B. Osanloo, and R. Sajedi (2015) Application of splitter plate on the modification of hydrothermal behavior of PPFHS, Applied Thermal Engineering 80, 97108. doi: 10.1016/j.applthermaleng. 2015.01.046
  15. [15] Gong, L., J. Zhao, and S. Huang (2015) Numerical study on layout of microchannel heat sink for thermal management of electronic devices, Applied Thermal Engineering 88, 480490. doi: 10.1016/j. applthermaleng.2014.09.048
  16. [16] Escher, W., B. Michel, and D. Poulikakos (2009) Efficiency of optimized bifurcating tree-like and parallel microchannel networks in the cooling of electronics, Int. J. of Heat and Mass Transfer 52, 14211430. doi: 10.1016/j.ijheatmasstransfer.2008.07.048
  17. [17] Kandlikar, S. G. (2005) High flux heat removal with microchannels - a roadmap of challenges and opportinities, Heat Transfer Engineering 26(8), 514. doi: 10.1080/01457630591003655
  18. [18] Shafeie, H., O. Abouali, K. Jafarpur, and G. Ahmadi (2013) Numerical study of heat transfer performance of single-phase heat sinks with micro pin-fin structures, Applied Thermal Engineering 58, 6876. doi: 10. 1016/j.applthermaleng.2013.04.008
  19. [19] Arbabi,F.,R.Roshandel,andG.K.Moghaddam(2012) Numerical modelling of an innovative bipolar plate design based on the leaf venation patterns for PEM fuel cells, IJE Transactions C: Aspects 25, 177186. doi: 10.5829/idosi.ije.2012.25.03c.01
  20. [20] Roshandel,R.,F.Arbabi,andG.K.Moghaddam(2012) Simulationof aninnovative flow-field design basedon bio inspired pattern for PEM fuel cells, Renewable Energy 41, 8695. doi: 10.1016/j.renene.2011.10.008
  21. [21] Camburn, B., K. Otto, D. Jensen, R. Crawford, and K. Wood (2015) Designing biologically inspired leaf structures: computational geometric transport analysis of volume – to point flow channels, Engineering with Computers 31, 361374. doi: 10.1007/s00366-0140356-z
  22. [22] Arvay, A., J. French, J. C. Wang, X. H. Peng, and A. M Kannan (2013) Nature inspired flow field designs for proton exchange membrane fuel cell, Int. J. Hydrogen Energy 38, 37173726. doi: 10.1016/j.ijhydene.2012. 12.149
  23. [23] Guo, N., M. C. Leu, and U. O. Koylu (2014) Bio-inspired flow field designs for polymer electrolyte membrane fuel cells, Int. J Hydrogen Energy 39, 21185 21195. doi: 10.1016/j.ijhydene.2014.10.069
  24. [24] Currie, J. M. (2010) Biomimetic Design Applied to the Redesign of a PEM Fuel Cell Flow Field, M.A.Sc. Thesis, University of Toronto.
  25. [25] Kloess, J. P., X. Wang, J. Liu, Z. Shi, and L. Guessous (2009) Investigation of bio-inspired flow channel designs for bipolar plates in proton exchange membrane fuel cells, J. Power Sources 188, 132140. doi: 10. 1016/j.jpowsour.2008.11.123
  26. [26] Faezaneh, M., M. R. Salimpour, and M. R. Tavakoli (2016) Design of bifurcating microchannels with/without loops for cooling of square-shaped electronics, Applied Thermal Engg 108, 581595. doi: 10.1016/j. applthermaleng.2016.07.099
  27. [27] Chen, T., Y. Xiao, and T. Chen (2012) The impact onPEMFC of bionic flow field with a different branch, Energy Procedia 28, 134139. doi: 10.1016/j.egypro. 2012.08.047
  28. [28] COMSOL user’s manual (2016) www.comsol.com.
  29. [29] Tuckerman, D. B., and R. F. W. Pease (1981) Highperformance heat sinking for VLSI, IEEE Electron. Lett, EDL 2, 126129. doi: 10.1109/EDL.1981.25367
  30. [30] Qu, W., and I. Mudawar (2002) Experimental and numerical study of pressure drop and heat transfer in a single-phase microchannel heat sink, Int. J. of Heat and Mass Transfer 45, 25492565. doi: 10.1016/ S0017-9310(01)00337-4
  31. [31] Fedorov, A. G., and R. Viskanta (2000) Three-dimensional conjugate heat transfer in the microchannel heat sink for electronics packaging, Int. J. of Heatand Mass Transfer 43, 399415. doi: 10.1016/S0017-9310(99) 00151-9
  32. [32] Zhao, C. Y., and T. J. Lu (2002) Analysis of microchannel heat sinks for electronics cooling, Int. J. of Heat and Mass Transfer 45, 48574869. doi: 10.1016/ S0017-9310(02)00180-1
  33. [33] Chen, C. H. (2007) Forced convection heat transfer in microchannel heat sinks, Int. J. of Heat and Mass Transfer 50, 21822189. doi: 10.1016/j.ijheatmasstransfer. 2006.11.001