Journal of Applied Science and Engineering

Published by Tamkang University Press

1.30

Impact Factor

1.60

CiteScore

Tzong-Shyng Leu1 , Chin-Tsan Wang This email address is being protected from spambots. You need JavaScript enabled to view it.2 and Nan-Jia Huang1

1Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan 701, R.O.C.
2Department of Mechanical and Electro-Mechanical Engineering, National I Lan University, I-Lan, Taiwan 260, R.O.C.


 

Received: February 25, 2014
Accepted: January 23, 2015
Publication Date: March 1, 2015

Download Citation: ||https://doi.org/10.6180/jase.2015.18.1.04  


ABSTRACT


A micro capillary pumped loop (MCPL) system is a highly efficient heat transfer device that uses capillary force in the evaporator region as the driving force to pump working fluid in a loop. In this study, the effects of micro-channel geometry and surface modification within an MCPL evaporator of MCPLs will be studied for improving the heat transfer performance. Techniques of surface modification are applied in this study to selectively define the surface as a hydrophilic or hydrophobic area. Results show that the higher the heating power provided by the micro heater, the faster the growing rate of the thermal bubble will be. Generally speaking, the larger the amount of injected working fluids applied, the faster the thermo bubble motion will be. When the size of the channel is scaled down, nucleation of the thermal bubble would occur easily and heat transfer enhancement would be expected. It is also found that bubbles generated by heater h2 (initial location of diffuser) will have a self-driven force to move the bubbles downward because of using a hydrophilic diffuser area. These findings will be useful to the further the optimal design of MCPLs in the future.


Keywords: Micro Capillary Pumped Loop (MCPL), Thermo Bubble, Micro-Channel, Heat Transfer, Surface Modification


REFERENCES


  1. [1] Kenning, D. B. R. and Yan, Y., “Pool Boiling Heat Transfer on a Thin Plate: Features Revealed by Liquid Crystal Thermo Graphy,” Int. J. Heat and Mass Transfer, Vol. 39, No. 15, pp. 31173137 (1996). doi: 10. 1016/0017-9310(96)00006-3
  2. [2] Judd, R. L. and Chopra, A., “Interaction of the Nucleation Processes Occurring at Adjacent Nucleation Sites,” ASME J. of Heat and Transfer, Vol. 115, No. 2, pp. 955962 (1993). doi: 10.1115/1.2911392
  3. [3] Dhir, V. K., “Numerical Simulations of Pool-Boiling Heat Transfer,” AIChE Journal, Vol. 47, No. 4, pp. 813834 (2001). doi: 10.1002/aic.690470407
  4. [4] Shoji, M. and Takagi, Y., “Bubbling Features from a Single Artificial Cavity,” Int. J. Heat and Mass Transfer, Vol. 44, No. 14, pp. 27632776 (2001). doi: 10. 1016/S0017-9310(00)00300-8
  5. [5] Zhang, L. and Shoji, M., “Nucleation Site Interaction in Pool Boiling on the Artificial Surface,” Int. J. Heat and Mass Transfer, Vol. 46, No. 3, pp. 513522 (2003). doi: 10.1016/S0017-9310(02)00291-0
  6. [6] Chatpun, S., Watanabe, M. and Shoji, M., “Nucleation Site Interaction in Pool Nucleate Boiling on a Heated Surface with Triple Artificial Cavities,” Int. J. Heat and Mass Transfer, Vol. 47, No. 14/16, pp. 3583 3587 (2004). doi: 10.1016/j.ijheatmasstransfer.2003. 11.035
  7. [7] Chatpun, S., Watanabe, M. and Shoji, M., “Experimental Study on Characteristics of Nucleate Pool Boiling by the Effects of Cavity Arrangement,” Experimental Thermal and Fluid Science, Vol. 29, No. 1, pp. 3340 (2004). doi: 10.1016/j.expthermflusci.2004.01.007
  8. [8] Sato, T., Koizumi, Y. and Ohtake, H., “Experimental Study on Fundamental Phenomena of Boiling Using Heat Transfer Surfaces with Well-Defined Cavities Created by MEMS (Effect of Spacing between Cavities),” Trans ASME J. of Heat Transfer, Vol. 30, No. 8, pp. 084501-1084501-4 (2008). doi: 10.1115/1.2927399
  9. [9] Sato, T., Koizumi, Y. and Ohtake, H., “Experimental Study on Nucleation Site Interaction During Pool Nucleate Boiling by Using Three Artificial Cavities,” ASME International Mechanical Engineering Congress and Exposition, CD-ROM, IMECE2008-68147 (2008). doi: 10.1115/IMECE2008-68147
  10. [10] Mikic, B. B. and Rohsenow, W. M., “A New Correlation of Pool-Boiling Data Including the Effect of Heating Surface Characteristics,” Journal of Heat Transfer, Vol. 91, pp. 245250 (1969). doi: 10.1115/1. 3580136
  11. [11] Das, A. K., Das, P. K. and Saha, P., “Heat Transfer During Pool Boiling Based on Evaporation from Micro and Macrolayer,” Int. J. Heat Mass Transfer, Vol. 49, pp. 34873499 (2006). doi: 10.1016/j.ijheat masstransfer.2006.02.050
  12. [12] Moghaddam, S. and Kiger, T. K., “Microscale Study of the Boiling Process in Low-Surface-Tension Fluids,” ASME IMECE, IMECE2006-16267, CD-R, (2006). doi: 10.1115/IMECE2006-16267
  13. [13] Kobayashi, Y., Toyokawa, S. and Araki, T., “Heat and Mass Transfer from Thin Liquid Film in the Vicinity of the Interline of Meniscus,” Thermal Science & Engineering, Vol. 2, No. 1, pp. 4551 (1994).
  14. [14] Hu, X. G., Zhao, Y. H., Yan, X. H. Tsuruta, T., “A Novel Micro Cooling System For Electronic Device by Using Micro Capillary Groove Evaporator,” Journal of Enhanced Heat Transfer, Vol. 11, No. 4, pp. 407 416 (2004). doi: 10.1615/JEnhHeatTransf.v11.i4.180
  15. [15] Labuntsov, D. A., “Current Theories of Nucleate Boiling of Liquids,” Heat Transfer-Soviet Research, Vol. 7, No. 3, pp. 114 (1975).
  16. [16] Zeng, L. Z., Klausner, J. F. and Mei, R., “A Unified Model for the Prediction of Bubble Detachment Diameters in Boiling Systems-I Pool Boiling,” Int. J. Heat Mass Transfer, Vol. 36, No. 9, pp. 22612270 (1993). doi: 10.1016/S0017-9310(05)80111-5
  17. [17] Zuber, N., “The Dynamics of Vapor Bubbles in Nonuniform Temperature Fields,” Int. J. Heat Mass Transfer, Vol. 2, pp. 8398 (1961). doi: 10.1016/0017-9310 (61)90016-3
  18. [18] Mei, R., Chen, W., James, F. and Klausner., “Vapor Bubble Growth in Heterogeneous Boiling-I Formulation,” Int. J. Heat Mass Transfer, Vol. 38, No. 5, pp. 909919 (1995). doi: 10.1016/0017-9310(94)00196-3
  19. [19] Zhao, Y. H., Masuoka, T. and Tsuruta, T., “Unified Theoretical Prediction of Fully Developed Nucleate Boiling and Critical Heat Flux Based on a Dynamic Microlayer Model,” Int. J. Heat Mass Transfer, Vol. 45, pp. 31893197 (2002). doi: 10.1016/S0017-9310 (02)00022-4
  20. [20] Thome, J. R., “Boiling in Micro Channels: a Review of Experiment and Theory,” Int. J. Heat Fluid Flow, Vol. 25, pp. 128139 (2004). doi: 10.1016/j.ijheatfluid flow.2003.11.005
  21. [21] Pan, K. L. and Chen, Z. J., “Simulation of Bubble Dynamics in a Microchannel Using a Front-Tracking Method,” Comput Mata Appl, Vol. 67, No. 2, pp. 290 306 (2014). doi: 10.1016/j.camwa.2013.05.001
  22. [22] Tsai, J. H. and Lin, L., “A Thermal-Bubble-Actuated Micronozzle-Diffuser Pump,” Journal of Microelectromechanical Systems, Vol. 11, No. 6, pp. 665671 (2002). doi: 10.1109/JMEMS.2002.802909
  23. [23] Danniel, S., Chaudhury, M. K. and Chen, J. C., “Fast Drop Movements Resulting from the Phase Change on a Gradient Surface,” Science, Vol. 291, pp. 633 636 (2001). doi: 10.1126/science.291.5504.633
  24. [24] Wasan, D. T., Nikolov, A. D. and Brenner, H., “Fluid Dynamics: Droplets Speeding on Surfaces,” Science, Vol. 291, pp. 605606 (2001). doi: 10.1126/science. 1058466
  25. [25] Lee, W. and Son, G., “Numerical Simulation of Bubble Growth and Heat Transfer During Flow Boiling in a Surface-Modified Microchannel,” Heat Transfer Eng, Vol. 35, No. 5, pp. 501507 (2014). doi: 10.1080/ 01457632.2013.833050
  26. [26] Talvy, C. A., Shemer, L. and Barnea, D., “On the Interaction between Two Consecutive Elongated Bubbles in a Vertical Pipe,” Int J Multiphas Flow, Vol. 26, pp. 19051923 (2000). doi: 10.1016/S0301-9322(00) 00004-5
  27. [27] Lauga, E. and Brenner, M. P., “Dynamic Mechanisms for Apparent Slip on Hydrophobic Surfaces,” Physical Review E, Vol. 70, pp. 02631110263117 (2004). doi: 10.1103/PhysRevE.70.026311
  28. [28] Ho, T. Y., Ou, S. F., Huang, S. H., Lee, C. N., Ger, L. P., Hsieh, K. S., Cheng, H. Y., Lee, W. Y. and Weng, K. P., “Effect of Flow Rate on Delivery of Bubble Continuous Positive Airway Pressure in an in Vitro Model,” Pediatr Neonatol, Vol. 51, No. 4, pp. 214 218 (2010). doi: 10.1016/S1875-9572(10)60041-1
  29. [29] Basaran, O. A., “Nonlinear Oscillations of Viscous Liquid Drops,” T. Fluid Mech, Vol. 241, pp. 169198 (1992). doi: 10.1017/S002211209200199X
  30. [30] Kandlikar, S. G., “Controlling Bubble Motion Over Heated Surface through Evaporation Momentum Force to Enhance Pool Boiling Heat Transfer,” Appl Phys Lett, Vol. 102, pp. 05161110516115 (2013). doi: 10. 1063/1.4791682
  31. [31] Wang, C. T., Leu, T. S. and Lai, T. M., “Micro Capillary Pump Loop System for a Cooling High Power Device,” Exp Therm Fluid Sci, Vol. 32, pp. 10901095 (2008). doi: 10.1016/j.expthermflusci.2008.01.001